



# **CIRS:** Bursting Filter Bubbles by Counterfactual Interactive Recommender System

Chongming Gao<sup>1</sup>, Wenqiang Lei<sup>2</sup>, Jiawei Chen<sup>1</sup>, Shiqi Wang<sup>3</sup>, Xiangnan He<sup>1,\*</sup>, Shijun Li<sup>1</sup>, Biao Li<sup>4</sup>, Yuan Zhang<sup>4</sup>, Peng Jiang<sup>4</sup>

<sup>1</sup>University of Science and Technology of China; <sup>2</sup>Sichuan University, China; <sup>3</sup>Chongqing University, China; <sup>4</sup>Kuaishou Technology Co., Ltd

https://chongminggao.me | chongming.gao@gmail.com

\* Outline



### **1. Background and Motivation.**

- Filter Bubbles in Recommendation
- Why Do we Choose the Interactive Recommendation?
- Empirical Study of User Satisfaction in Filter Bubbles
- Motivation of the idea
- 2. Related Works and Existing Problems
- 3. Proposed Method: CIRS
- 4. Experiments

## **1.1 Filter Bubbles in Recommendation**

- □ Filter bubble
  - The phenomenon that recommender emphasizes only a small set of items in the feedback loop of the interaction process
  - □ Similar concepts: echo chamber, information cocoon



#### Filter bubbles in the recommendation-feedback loop

1.2 Why Interactive Recommender System (IRS)?

- Because IRS is the general form of real-world recommenders (static recommender is only a special/simplified case of IRS).
- Because IRS provides an environment to evaluate the effect of filter bubbles.



An interaction trajectory in Kuaishou, a video viewing App

1.2 Why Interactive Recommender System (IRS)?
 Because IRS is the general form of real-world recommenders (static recommender is only a special/simplified case of IRS).

Because IRS provides an environment to evaluate the effect of filter bubbles.
Formation of filter bubble

s: the **state** representing the context of the interaction.

*r*: the **reward** representing user satisfaction.

*a*: an **action**, e.g. a recommended item



The general framework of interactive recommendation

## **1.3 User Satisfaction in Filter Bubbles**

Get bored

Assumption: Users may feel bored and give negative feedback in such a repeated and monotonous recommendation stream.



## **1.3 User Satisfaction in Filter Bubbles**

Get bored

video stream in

Kuaishou App

Assumption: Users may feel bored and give negative feedback

in such a repeated and monotonous recommendation stream.

**Empirical studies** conducted on Kuaishou App. 



#### Two important user behaviors reflecting satisfaction

Keeping watching until (1)quitting or scrolling to the

next one



Metric: Watching ratio

(watching time / video video time duration)

Hitting and staying in the (2)comments section



Metric: Time staying comments section

## **1.3 User Satisfaction in Filter Bubbles**



### Assumption: Users may feel bored and give negative feedback

in such a repeated and monotonous recommendation stream.



Observation 1: User satisfaction towards a recommended item drops when the system increases the number of similar items that have the same categories with this item in recent recommendations.
 Observation 2: User satisfaction towards a recommended item drops as the time interval between two similar items reduces.

## 1.4 Motivation of the idea

■ Propose an unbiased causal user model  $\phi_M$  in the model-based offline reinforcement learning (RL) framework to disentangle the intrinsic user interest from the overexposure effect of items.



Save interaction data of policy  $\pi_{\theta}$ : {(u, i, r, t)}

# Traditional online interactive recommender

Counterfactual IRS (CIRS) based on offline RL learning \* Outline



- **1. Background and Motivation.**
- 2. Related Works and Existing Problems
  - Efforts to Mitigate Filter Bubbles
  - Causal Inference-based Recommendation
  - Offline Learning for Online Recommenders
- 3. Proposed Method: CIRS
- 4. Experiments

## 2.1 Efforts to Mitigating Filter Bubbles

### **Existing Efforts**



• Improve awareness of diverse social opinions (Gao et al. IUI' 18), (Donkers et al. RecSys' 21)

#### Improve the system's

- Diversity (Aridor et al, RecSys' 20) (Tommasel et al, RecSys' 21)
- Serendipity (Xu et al. TKDD' 20)
- Fairness (Masrour et al. AAAI' 20)

#### Study on

Whether the failed system can be cured by watching debunking content (Tomlein et al. RecSys' 21 Best Paper Award)

**However,** these efforts mainly focus on the solutions in the static setting, where the effect of filter bubbles is hard to observe and evaluate.

## 2.2 Causal Inference-based Recommendation

- Causal Inference (CI) has been widely used in NLP, CV, RS
- Instead of exploiting the correlation between input and output, CI explicitly models the causal mechanism among variables.
- General procedures (Judea Pearl, The Book of Why: The New Science of Cause and Effect)
  - 1. Construct a structure causal model (SCM) to describe the causal relationship among the related variables.
  - 2. Fit an unbiased model (e.g., implemented as a neural network) based on the SCM on the training data set.
  - 3. In the inference stage, we actively change certain input variables (called intervention) and predict the unbiased result of the target variable.

## 2.3 Offline Learning for Online Recommenders

- Static model is inflexible. Reinforcement learning (RL) introduces a policy that has the ability to adapt to the changing environment. However, it is impractical to train RL online. Because:
  - 1. for the model, the online interaction with humans is too slow.
  - 2. for users, interacting with a half-baked system can hurt experiences.

### □ Solution: Offline Reinforcement Learning.



Sergey Levine et al. 2020, Offline Reinforcement Learning: Tutorial, Review, and Perspectives on Open Problems

## 2.3 Offline Learning for Online Recommenders

#### □ Solution: Offline Reinforcement Learning.

#### □ Off-Policy Evaluation via Importance Sampling:

- □ Main idea: Evaluate the target policy using historical policies.
- Problem: High variance

$$J(\pi_{\theta}) = \mathbb{E}_{\tau \sim \pi_{\beta}(\tau)} \left[ \frac{\pi_{\theta}(\tau)}{\pi_{\beta}(\tau)} \sum_{t=0}^{H} \gamma^{t} r(\mathbf{s}, \mathbf{a}) \right]$$
$$= \mathbb{E}_{\tau \sim \pi_{\beta}(\tau)} \left[ \left( \prod_{t=0}^{H} \frac{\pi_{\theta}(\mathbf{a}_{t} | \mathbf{s}_{t})}{\pi_{\beta}(\mathbf{a}_{t} | \mathbf{s}_{t})} \right) \sum_{t=0}^{H} \gamma^{t} r(\mathbf{s}, \mathbf{a}) \right] \approx \sum_{i=1}^{n} w_{H}^{i} \sum_{t=0}^{H} \gamma^{t} r_{t}^{i}, \tag{5}$$

where  $w_t^i = \frac{1}{n} \prod_{t'=0}^t \frac{\pi_{\theta}(\mathbf{a}_{t'}^i | \mathbf{s}_{t'}^i)}{\pi_{\beta}(\mathbf{a}_{t'}^i | \mathbf{s}_{t'}^i)}$  and  $\{(\mathbf{s}_0^i, \mathbf{a}_0^i, r_0^i, \mathbf{s}_1^i, \ldots)\}_{i=1}^n$  are *n* trajectory samples from  $\pi_{\beta}(\tau)$ **Model-based Method:** 

Main idea: estimate the environment, i.e., transition probability *T*(*s*<sub>t+1</sub>|*s*<sub>t</sub>, *a*<sub>t</sub>)
 Problem: distribution shift, or **biases** in the estimated model.

Sergey Levine et al. 2020, Offline Reinforcement Learning: Tutorial, Review, and Perspectives on Open Problems

## 2.3 Offline Learning for Online Recommenders

#### □ Summarize RSs according to three dimensions

(1) whether the system explicitly builds a user model,

(2) whether the system considers debiasing, and

(3) whether the system has an **RL-based policy**.

|                              | User Mode    | l Debiasing  | RL-based     | Publications                     |
|------------------------------|--------------|--------------|--------------|----------------------------------|
| Static RS                    | $\checkmark$ |              |              | [14, 15, 21]                     |
| Unbiased static RS           | $\checkmark$ | $\checkmark$ |              | [23, 24, 39, 41, 52, 61, 64, 66] |
| Traditional IRS              |              |              | $\checkmark$ | [25, 26, 28, 55, 60, 65, 67, 69] |
| Model-based IRS              | $\checkmark$ |              | $\checkmark$ | [4, 8, 53, 62, 63, 68]           |
| OPE-based IRS                |              | $\checkmark$ | $\checkmark$ | [6, 18, 19, 30, 32, 47, 54]      |
| Unbiased model-<br>based IRS | $\checkmark$ | $\checkmark$ | $\checkmark$ | [7, 16]<br>CIRS (Ours)           |

Table 1: Six Types of Recommender Systems

\* Outline



- **1. Background and Motivation.**
- 2. Related Works and Existing Problems

## 3. Proposed Method: CIRS

- Problem Definition
- Framework of CIRS
- Causal Inference-based User Satisfaction Disentanglement
- 4. Experiments

## 3.1 Problem Definition

### **Symbol Definition**

 $\square$   $\mathcal{U},\mathcal{I}$ : the user set and the item set.

 $\square \mathcal{D}_u = \{\mathcal{S}_u^1, \mathcal{S}_u^2, \cdots, \mathcal{S}_u^{|\mathcal{D}_u|}\}: \text{ The set of all interaction sequence of a user } u \in \mathcal{U}.$ 

- $\begin{tabular}{ll} \hline $\mathcal{S}_{u}^{k} = \{(u,i_{l},t_{l})\}_{1 \leq l < |\mathcal{S}_{u}^{k}|}$ is the$ *k*-th interaction sequence (i.e., trajectory), where user*u* $begins to interact with the system at time <math>t_{1}$  and quits at time  $t_{|\mathcal{S}_{u}^{k}|}$. i_{l} \in \mathcal{I}$ is the recommended item at time <math>t_{l}$. \end{tabular}$
- $\square$   $\mathbf{e}_u \in \mathbb{R}^{d_u}$ ,  $\mathbf{e}_i \in \mathbb{R}^{d_i}$ : the representation vectors of user u and item i.

## 3.1 Problem Definition

#### **Reinforcement learning problem:**

- State:  $s_t \in \mathbb{R}^{d_s}$  at time *t* is regarded as a vector representing information of all historical interactions of user *u*.
- Action: The system makes an action  $a_t$  at time is to recommend an item to the user. Let  $\mathbf{e}_a \in \mathbb{R}^{d_a}$  be the representation vector. In this paper,  $\mathbf{e}_a = \mathbf{e}_i$ .
- Reward: A user u returns feedback as a reward score r reflecting its satisfaction after receiving a recommended item i.
- **Policy network:**  $\pi_{\theta} = \pi_{\theta}(a_t|s_t)$  is the target policy that decides how to make an action  $a_t$  conditioned on the state  $s_t$ . In this paper, we use the Proximal Policy Optimization (PPO) algorithm as the policy network.

## 3.1 Problem Definition

### The whole procedure



Save interaction data of policy  $\pi_{\theta}$ : {(u, i, r, t)}

Counterfactual IRS (CIRS) based on offline RL learning

- 1. Train a user model  $\phi_M$  via supervised learning on historical data  $\{(u, i, r)\}$ .
- 2. Using the learned user model  $\phi_M$  to train policy  $\pi_{\theta}$ . Each time the policy  $\pi_{\theta}$  makes an action (i.e., a recommended item), the causal user model  $\phi_M$  provides a *counterfactual reward* r. If  $\pi_{\theta}$  have made similar recommendations before,  $\phi_M$  shrinks the reward r.
- 3. Serving the learned policy  $\pi_{\theta}$  to users and evaluating the results in the real environment.



#### **Three modules in CIRS**

### **D**Causal User Model $\phi_M$

- Preference estimation
- Causal intervention

### **D**RL Policy $\pi_{\theta}$

Interactive strategy

### □ State Tracker

Recording interaction context



#### **Transformer-based State Tracker**

The states are derive from:

**User representation**:

 $\mathbf{e}'_u = FFN(\mathbf{e}_u)$ 

**Action representation** obtained from a gate mechanism:

 $\mathbf{e}_{a_t}' = \boldsymbol{g}_t \odot \mathbf{e}_{a_t},$ 

where  $\boldsymbol{g}_t = \sigma (\boldsymbol{W} \cdot Concat(\boldsymbol{r}_t, \boldsymbol{e}_{a_t}) + \boldsymbol{b})$ 



#### **RL-based Interactive Recommendation Policy**

 $\square \pi_{\theta}$ : **PPO algorithm**, an on-policy policy gradient method in RL.

#### □ Maximize the objective:

$$\mathbb{E}_{t}\left[\min\left(\frac{\pi_{\theta}(a_{t}|s_{t})}{\pi_{\theta_{old}}(a_{t}|s_{t})}\hat{A}_{t}, clip\left(\frac{\pi_{\theta}(a_{t}|s_{t})}{\pi_{\theta_{old}}(a_{t}|s_{t})}, 1-\epsilon, 1+\epsilon\right)\hat{A}_{t}\right)\right]$$

 $\pi_{\theta_{old}}$ : the policy generating the data

 $\pi_{\theta}$ : the updating policy

 $\hat{A}_t$ : the advantage function

Schulman et al. Proximal Policy Optimization Algorithms. arXiv:1707.06347 (2017)



#### **Causal User Model**

- 1. Estimate user preference using a naive recommendation model, e.g., *DeepFM*.
- 2. Disentangle the intrinsic user interest from the overexposure effect of items.

#### **Structure Causal Model**



- U: a certain user u, e.g., an ID or the profile feature that can represent the user.
- *I*: an item *i* that is recommended to user *u*.
- *R*: the **user satisfaction**, also used as the *reward*.
- *Y*: **intrinsic user interest** (regardless of item exposure)
- $E_t$ : the **overexposure effect** of item *i* on user *u*. Where  $e_t^*$  is the value of  $E_t$  computed in the inference stage (RL planning stage).

#### **Structure Causal Model**



#### Two paths in (b):

 $(U, I) \rightarrow Y \rightarrow R$ : projects user and item features into the corresponding preference  $\hat{y}_{ui} = f_{\theta}(u, i)$ , which can be implemented by various recommendation models (DeepFM).

 $I \rightarrow E_t \rightarrow R$ : represents the real-time overexposure effect  $e_t^*$  of an item *i* on user *u* that eventually results in the user satisfaction *r*.

#### Definition of overexposure effect $E_t$

$$e_t = e_t(u, i) = \alpha_u \beta_i \sum_{\{(u, i_l, t_l) \in S_u^k, t_l < t\}} \exp\left(-\frac{t - t_l}{\tau} \times dist(i, i_l)\right)$$

- $S_u^k = \{(u, i_l, t_l)\}_{1 \le l < |S_u^k|}$  is the *k*-th interaction sequence (i.e., trajectory) of user *u*.
- $dist(i, i_l)$ : is distance between two items *i* and  $i_l$ .
- $\alpha_u$ : represents the *sensitivity* of user *u* to the overexposure effect
- $\beta_i$ : represents the *unendurableness* of item *i*.

#### Definition of user satisfaction $\hat{r}_{ui}^t$

$$\hat{r}_{ui}^t = \frac{\hat{y}_{ui}}{1 + e_t(u, i)}$$

Loss function in training user model:  

$$L_{BPR} = -\sum_{\{(u,i,t)\in D, j\sim p_n\}} \log(\sigma(\hat{r}_{ui}^t - \hat{r}_{uj}^t))$$

#### Definition of overexposure effect $E_t$

$$e_t = e_t(u, i) = \alpha_u \beta_i \sum_{\{(u, i_l, t_l) \in S_u^k, t_l < t\}} \exp\left(-\frac{t - t_l}{\tau} \times dist(i, i_l)\right) \qquad (U)$$



#### **Causal Intervention on Overexposure Effect**

$$\boldsymbol{e}_{t}^{*} = \boldsymbol{\gamma}^{*} \cdot \boldsymbol{\alpha}_{u} \boldsymbol{\beta}_{i} \sum_{\{(u, \boldsymbol{i}_{l}^{*}, \boldsymbol{t}_{l}^{*}) \in \boldsymbol{S}_{u}^{*}, \boldsymbol{t}_{l}^{*} < t\}} \exp\left(-\frac{t - \boldsymbol{t}_{l}^{*}}{\tau^{*}} \times dist(\boldsymbol{i}, \boldsymbol{i}_{l}^{*})\right) \boldsymbol{U}^{*}$$

Variables with Asterisk " \* " are these in the inference stage (i.e., RL planning stage)

#### Adjusted user satisfaction $\hat{r}_{ui}^{t*}$

$$\hat{r}_{ui}^{t*} = \frac{\hat{y}_{ui}}{1 + e_t^*(u, i)}$$



 $e_t^*$ 

\* Outline



- **1. Background and Motivation.**
- 2. Related Works and Existing Problems
- 3. Proposed Method: CIRS

## 4. Experiments

- Experimental Setup
- Performance Comparison
- More Analysis

#### Recommendation Environments: 1. VirtualTaobao

- A benchmark RL environment for recommendation.
- Created by simulating the behaviors of real users on Taobao.
- A user is represented as an 88-dimensional vector  $\mathbf{e}_u \in \{0,1\}^{88}$
- An item is represented as a 27-dimensional vector  $\mathbf{e}_i \in \mathbb{R}^{27}$ ,  $0 \le \mathbf{e}_i \le 1$ .
- When a recommender makes an action, the environment will immediately return a *reward* representing the number of clicks, *r* ∈ {0,1,…,10}.

#### Recommendation Environments: 2. KuaiEnv

|              | #users | #Items | #Interactions | Density |
|--------------|--------|--------|---------------|---------|
| Small matrix | 1,411  | 3,327  | 4,676,570     | 99.6%   |
| Big matrix   | 7,176  | 10,729 | 12,530,806    | 13.4%   |

| Item feature:   | Each video has at least 1 and at most 4 tags out of the totally 31 tags, e.g., {Sports}. |
|-----------------|------------------------------------------------------------------------------------------|
| Social network: | Small matrix: 146 users have friends.<br>Big matrix: 472 users have friends.             |

**User-item matrix** 



(a) Traditional recommendation datasets



Unobserved value



**Small matrix:** The fully observed data used for evaluating the model.

**Big matrix**: Additional interactions used for training the model.

(b) The User-item matrices in the proposed *KuaiRec* 

#### **Exit Mechanism:**



Compute distance (VirtualTaobao: Euclidean distance,

*KuaishouEnv:* Check if there is a overlapped attribute)

#### Feature vectors of items

- VirtualTaobao: 27-dim continuous vectors
- KuaishouEnv: 31-dim multi-hot vectors

Exit mechanism:

- VirtualTaobao: Quit if any distance lower than  $d_o$ .
- KuaishouEnv: Quit if more than  $n_0$  items have overlapped attributes.

**Evaluation metric:** 

Accumulated reward =  $\sum_{t=1}^{T} r_t$ , which requires:



#### **Baselines** (*Recommendation Model + Policy*)

- **DeepFM** (*DeepFM* + *Softmax Sampling*)
- **IPS** (*IPS* + *Softmax Sampling*)
- **PD** (*PD* + Softmax Sampling)
- **DICE** (*DICE* + *Softmax Sampling*)
- **MLP** (*MLP* + SoftMax Sampling)
- Random
- $\epsilon$ -greedy (DeepFM +  $\epsilon$ -greedy)
- UCB (DeepFM + UCB)
- **CIRS** (User Model + PPO)
- CIRS w/o CI (CIRS without causal inference module)





#### **Insights:**

IPS

1. CIRS achieves maximal accumulated reward.

→ MLP → PD → Random → UCB

- 2. Interestingly, in A2, increasing of the reward in each round compromises the length of trajectory in the beginning. But finds a balance in the end.
- 3. CIRS w/o CI is unstable and the performance degenerates with epoch increasing.
- 4. Random in VirtualTaobao cannot bring longer length because of curse of dimensionality.
- 5. IPS has high variance.
- 6. UCB shows the effect of E&E, but it cannot address filter bubble problem.

### **Insights:**

In VirtualTaobao, both policies achieve the same level of singleround performance as the static methods.

In KuaishouEnv, Armed with causal inference, CIRS beats its counterpart greatly.



#### **Results under different user sensitivity**



- When users become more sensitive, the performance of CIRS and CIRS w/o CI drop.
- Other baselines are not suitable in addressing filter bubbles.

### **4.3 Analysis** Effect of Key Parameters



- An active user is easier to get bored when viewing overexposed videos.
- Popular videos are less endurable when they are overexposed.

### **4.3 Analysis Effect of Key Parameters**



#### **Insights:**

- Suitable  $(\tau, \tau^*)$  pair indeed improve the performance.
- The orders of magnitude of τ and τ\* are different because the unit of time is different, i.e., second(s) vs. step(s).



- The first work for learning to burst filter bubbles in interactive recommendation, where filter bubbles can be observed and evaluated.
- Proposed the CIRS based on offline reinforcement learning. We are the first to utilize the causal inference in interactive recommendation.
- 3. Collected a **fully filled dataset** (density: 100\%) from Kuaishou to create an interactive recommendation environment.
- 4. The **experiments** show that our proposed model can burst filter bubbles and gain the maximal accumulative rewards.





# Thanks

## Chongming Gao | 高崇铭 <u>chongming.gao@gmail.com</u>