

Alleviating Matthew Effect of Offline Reinforcement Learning in Interactive Recommendation SIGIR 2023 Full Paper

Chongming Gao¹, Kexin Huang¹, Jiawei Chen^{2,*}, Yuan Zhang³, Biao Li³, Peng Jiang³, Shiqi Wang⁴, Zhong Zhang⁵, Xiangnan He^{1,*}

¹University of Science and Technology of China; ²Zhejiang University, China; ³Kuaishou Technology Co., Ltd; ⁴Chongqing University, China; ⁵University of Science and Technology of China (*Corresponding author)

https://chongminggao.me | chongming.gao@gmail.com

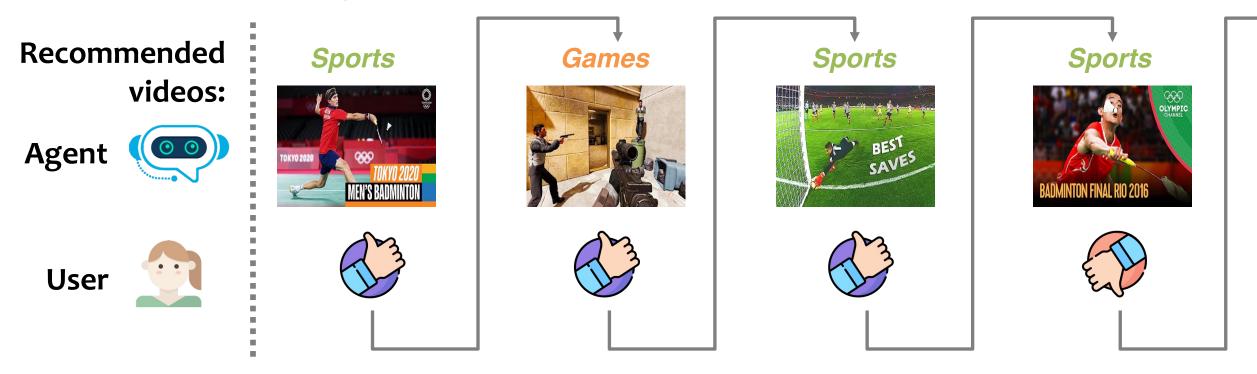
* Outline

1. Background and Motivation.

- Reinforcement Learning for Recommendation
- Conservatism of Offline RL Induces Matthew Effect
- Empirical Study of Matthew Effect.
- 2. Proposed Method: DORL
- 3. Experiments

1.1 Reinforcement Learning for Recommendation

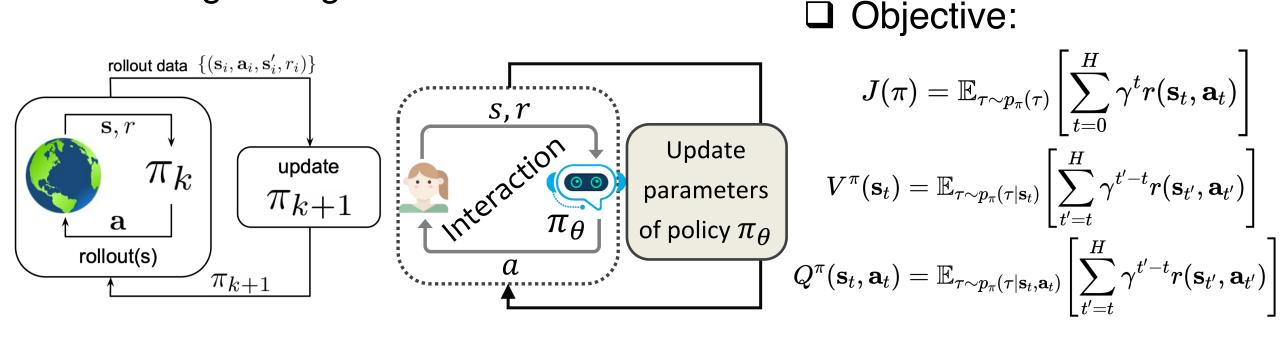
Interactive recommendation is the general form of real-world recommenders (static recommender is only a special/simplified case of IRS).



An interaction trajectory in Kuaishou, a video viewing App

1.1 Reinforcement Learning for Recommendation

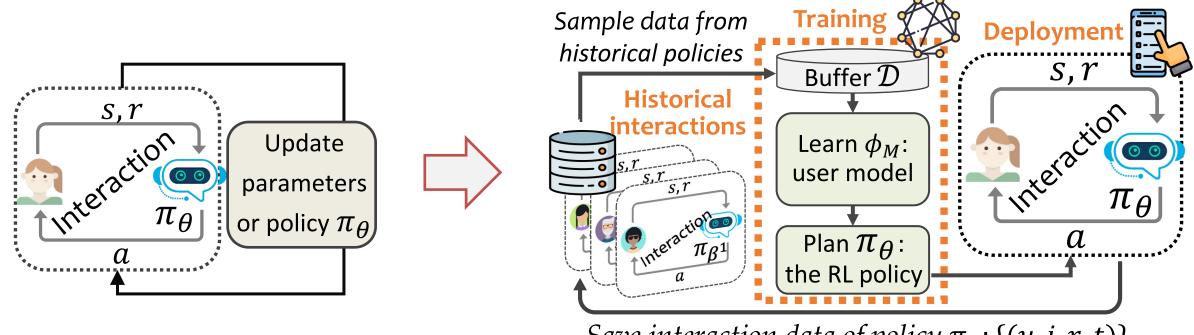
Since user satisfaction and long-term user engagement in the interactive recommendation have no *standard* answers. It is appropriate to use reinforcement learning (RL) to optimize the long-term gain.



(a) Flowchart of RL (b) RL-based interactive recommendation

1.1 Reinforcement Learning for Recommendation

- **D Problem:** We have to use offline data to learn the policy π_{θ} .
- **Solution:** Use a user model ϕ_M in the model-based offline reinforcement learning (offline RL) to estimate user preferences.



Save interaction data of policy π_{θ} : {(u, i, r, t)}

Figure: From online RL to offline model-based RL

Chongming Gao et al. CIRS: Bursting Filter Bubbles by Counterfactual Interactive Recommender System. TOIS 2023.

1.2 Conservatism of Offline RL Induces Matthew Effect

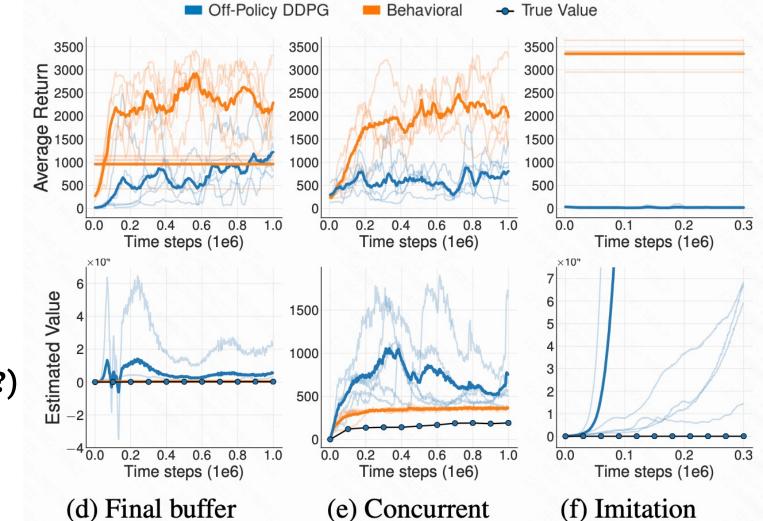
Offline RL (batched RL)

Challenge: distributional shift – overestimation of the value function.

Performance dropped (How well it does?)

Value overestimated (How well it thinks it does?)

Scott Fujimoto et al. Off-Policy Deep Reinforcement Learning without Exploration. ICML '19.



1.2 Conservatism of Offline RL Induces Matthew Effect

Offline RL (batched RL)

- **Challenge:** distributional shift overestimation of the value function.
- □ Solution: Conservatism or Pessimism

$$\begin{cases} \pi_{k+1} = \operatorname{argmax}_{\pi} \langle \pi, Q_k \rangle \\ Q_{k+1} = r - \mathbf{b} + \gamma P \langle \pi_{k+1}, Q_k \rangle \end{cases} \Leftrightarrow \begin{cases} \pi_{k+1} = \operatorname{argmax}_{\pi} \langle \pi, Q'_k - \mathbf{b} \rangle \\ Q'_{k+1} = r + \gamma P \langle \pi_{k+1}, Q'_k - \mathbf{b} \rangle \end{cases}$$

Shideh Rezaeifar et al. Offline Reinforcement Learning as Anti-Exploration. AAAI 22.

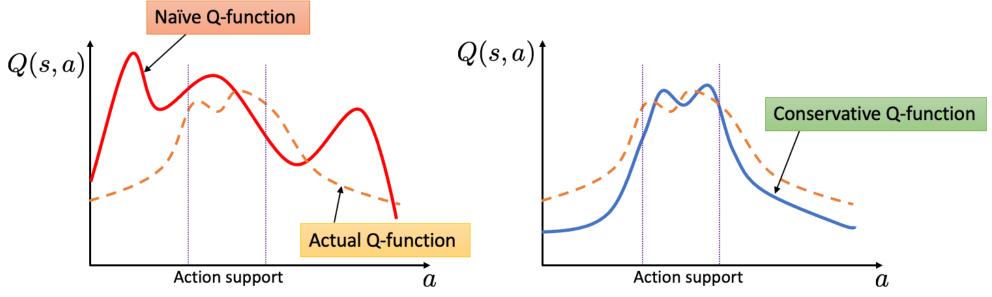


Figure from Aviral Kumar' blog: https://bair.berkeley.edu/blog/2020/12/07/offline/

1.2 Conservatism of Offline RL Induces Matthew Effect

Offline RL (batched RL)

- **Challenge:** distributional shift overestimation of the value function.
- Solution: Conservatism or Pessimism
- Problem in Recommendation: Matthew Effect:

"The rich gets richer and the poor gets poorer."

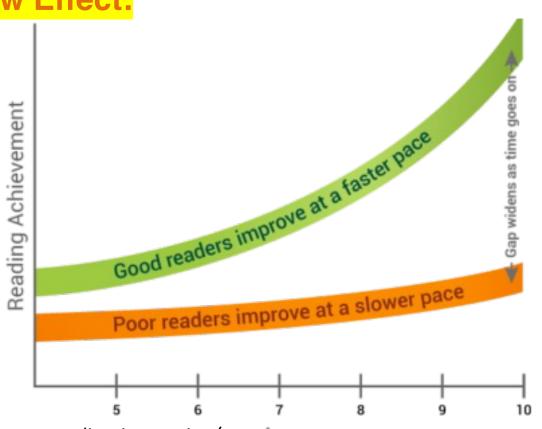
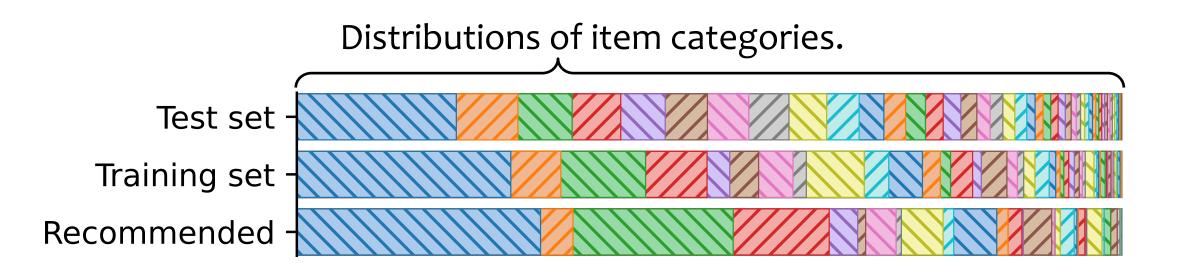


Figure from: https://www.phonicbooks.co.uk/2017/06/04/matthew-effect-comes-reading-instruction/ Age

1.3 Empirical Study of Matthew Effect

Visualization:

• A DeepFM model train on the KuaiRand-Pure dataset



Observation: Matthew effect occurs in Recommendation!

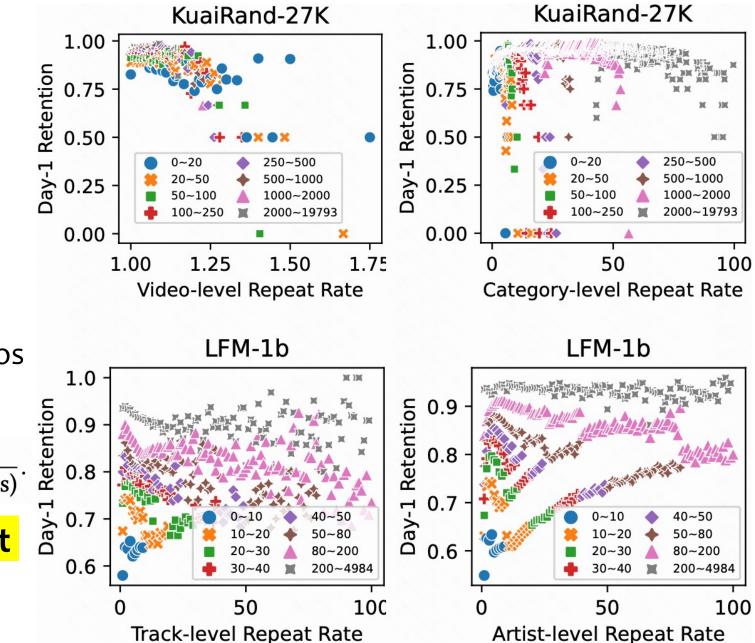
1.3 Empirical Study of Matthew Effect

Visualization:

- The relationship between Day-1
 Retention and item- level and
 category-level repeat rates in two
 datasets.
- The item-level (or category-level) repeat rate of a user viewing videos on a certain day is defined as:

the number of viewing events the number of unique videos (or unique categories)

Observation: Matthew effect hurts user experience!



***** Outline

- 1. Background and Motivation.
- 2. Proposed Method: DORL
 - State-of-the-art Offline RL Framework: MOPO
 - Problem: Accelerating Matthew Effect
 - Alleviate Matthew Effect by Penalizing Entropy
 - Framework of DORL
- **3. Experiments**

3.1 State-of-the-art Offline RL Framework: MOPO

Conservatism of MOPO: Penalizing uncertainty.

• A state-of-the-art general Model-based Offline Policy Optimization framework (MOPO) introduce a penalty function p(s, a) on the estimated reward $\hat{r}(s, a)$ as:

$$\tilde{r}(s,a) = \hat{r}(s,a) - \lambda p(s,a)$$

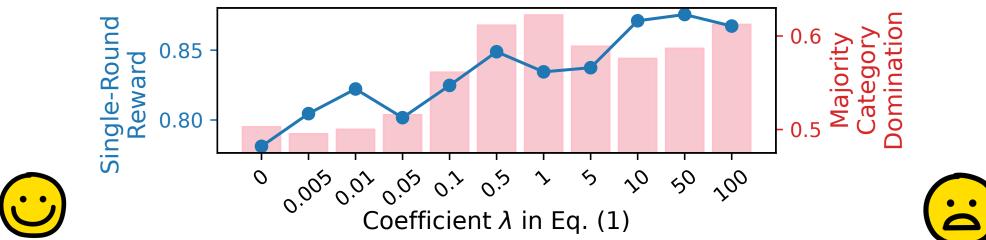
• The implementation of p(s, a) in MOPO is the uncertainty P_U of the dynamics model, i.e., $p(s, a) = P_U$.

Tianhe Yu et al. MOPO: Model-based offline policy optimization. NeurIPS 2020.

3.2 Problem: Accelerating Matthew Effect

Problem of Conservatism of MOPO in Recommendation:

$\tilde{r}(s,a) = \hat{r}(s,a) - \lambda p(s,a) \tag{1}$

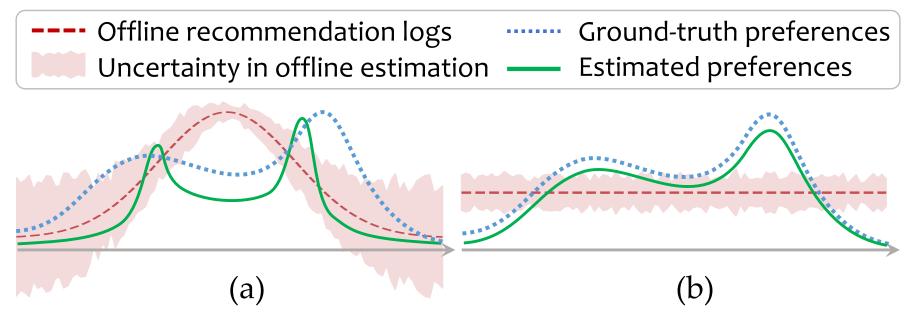


The single-round reward (the blue line) improves as expected, due to that the model pays more attention to items in the training distribution.

The Majority Category
 Domination (the red bars)
 increases, which indicates a
 severer Matthew effect.

3.3 Alleviate Matthew Effect by Penalizing Entropy

□ An intuitive example:



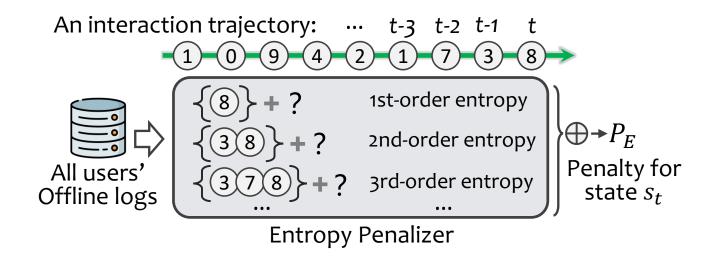
- (a) Gaussian recommendation policy: Since previous policy (Red line) cannot precisely reflect users' ground-truth preferences (blue line), the learned preferences (green line) are prone to be biased towards popular items (Matthew effect).
- (b) Uniform recommendation policy
 Under a random policy (Red line) the policy
 can capture ground-truth user preferences
 (blue line) and thus can produce an
 unbiased estimated preferences (green line).

3.3 Alleviate Matthew Effect by Penalizing Entropy Our Solution: Penalizing entropy of the behavior policy

• We add a term P_E in modified reward to penalize actions that lead to less diverse states.

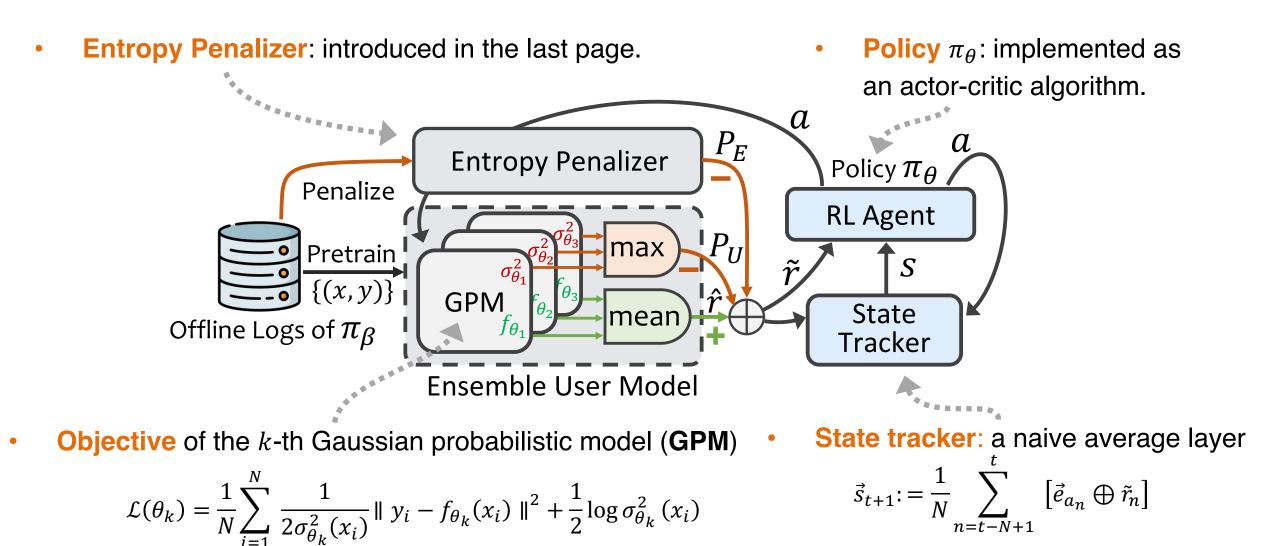
 $\tilde{r}(s,a) = \hat{r}(s,a) - \lambda_1 P_U - \lambda_2 P_E$ Penalty on Uncertainty Penalty on Entropy

• We define P_E to be the summation of k-order entropy of the behavior policy:



3.4 Framework of DORL

Our Solution: Penalizing entropy of the behavior policy



* Outline

- **1. Background and Motivation.**
- 2. Proposed Method: DORL

3. Experiments

- Experimental Setup
- Performance Comparison
- More Analysis

4.1 Experimental Setup

Datasets		Datasets	Usage	#Users	#Items	#Interactions	#Categories	
		KuaiRec	Train	7,176	10,728	12,530,806	31	
		Kuaikee	Test	1,411	3,327	4,676,570	31	
		KuaiRand	Train	27,285	7,551	1,436,609	46	
			Test	27,285	7,583	1,186,059	46	
KuaiRec (https://kuairec.com) KuaiRand (h						, i		
	10,728 items					Recommended videos	Randomly exposed	videos <i>Time</i>
s	1,411 users	Unobserved value Different rating values		An interaction Sequence				
user		Small mat observed o evaluating Big matrix			Valid viev	v 11 001101	00110 0011	
7,176 users			data used for			10 001010	00010 0100)
7					•••	•••	••••	
			r: Additional ns used for		View time	e vo. v. v. v. v. v. v.	0.0.4	0
	3,327 items	training the model.				l interaction history 2.04.08 ~ 2022.04.21)	Random exposure s (2022.04.22 ~ 2022.05.0	•

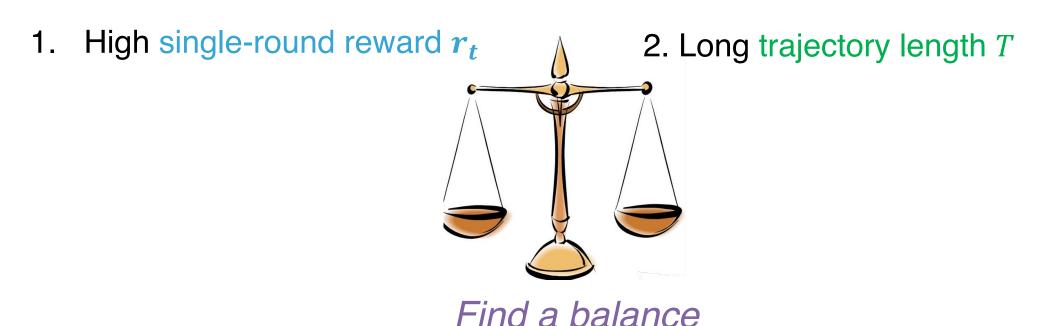
4.1 Experimental Setup

D Exit mechanism:

• **"Feel bored then quit"**: If the recommended item is similar to previous recommended ones, the interactive process terminates.

D Evaluation metric:

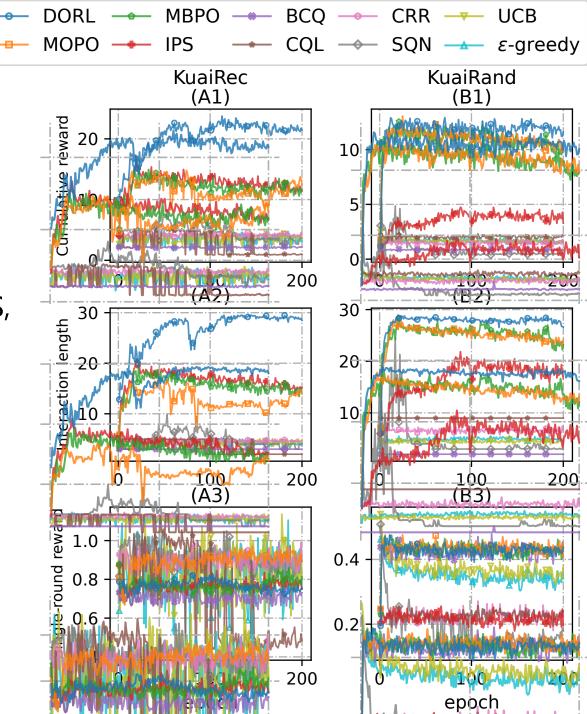
Accumulated reward = $\sum_{t=1}^{T} r_t$, which requires:



4.2 Results

Overall performance

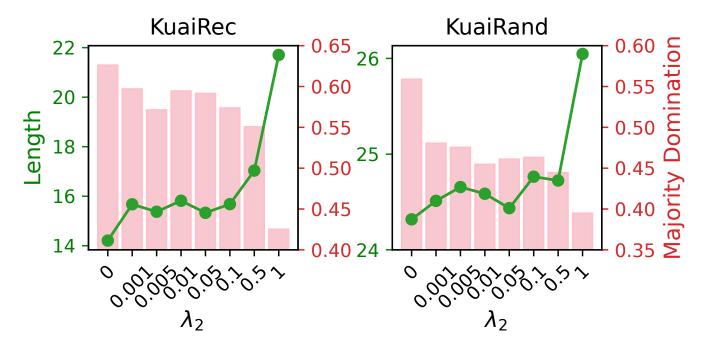
- 1. Our proposed DORL (blue line) shows the best performance in terms of the cumulative reward and the interaction length.
- 2. The four model-based RL methods (MBPO, IPS, MOPO, and DORL) significantly outperform the four model-free RL methods (SQN, CRR, CQL, and BCQ) with respect to trajectory length and cumulative rewards.
- 3. Single round reward: MOPO > MBPO. But MOPO neglects less popular items, which makes trajectory length: MOPO < MBPO. DORL remedies the situation!



4.3 Results on Alleviating Matthew Effect

D Varying the strength of penalty through different λ_2

 $\tilde{r}(s,a) = \hat{r}(s,a) - \lambda_1 P_U - \lambda_2 P_E$

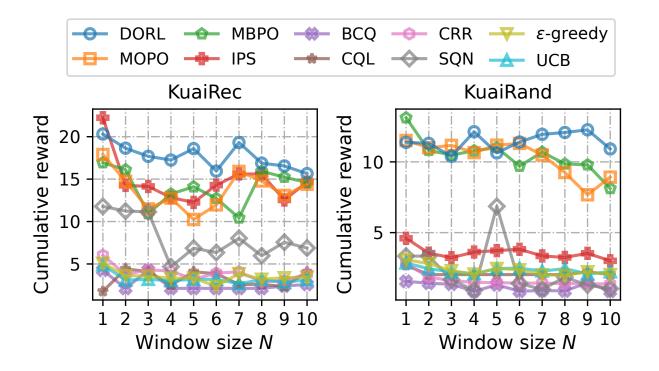


- Increasing λ₂ can diversify the outputs, which extends the interaction length (green lines) and results in high user satisfaction.
- Increasing λ₂ reduces Majority Category Domination (the red bars), alleviating the Matthew effect.

4.4 Results under Different Ending Conditions

□ Varying User Sensitivity:

• The interaction will end if there are one similar item in previous N results.



(As the value of *N* increases, the user's tolerance for similar content decreases)

DORL outperforms all other policies, which demonstrates the robustness of DORL in different environments.

Contributions:

- We point out that conservatism in offline RL can incur the Matthew effect in recommendation.
 We show this phenomenon in existing methods and how it hurts user satisfaction.
- We propose the DORL model that introduces a counterfactual exploration in offline data.
- We demonstrate the effectiveness of DORL in an interactive recommendation setting, where alleviating the Matthew effect increases users' long-term experience.
- **□** Future work:
 - To develop recommender systems as decision makers rather than preference fitters.
 - When fitting user interests is not a bottleneck anymore, researchers could consider higher-level goals, such as pursuing users' long-term satisfaction or optimizing social utility.

Thanks

Chongming Gao | 高崇铭 <u>chongming.gao@gmail.com</u>