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Abstract—The scarcity of labeled data in real streaming
environments has boosted the study of online semi-supervised
learning (SSL). However, existing online SSL models often
rely on some specific assumptions (e.g., manifold assump-
tion) and need to maintain some extra constraints (e.g., the
Laplacian matrix) on the fly, which is usually time and
resource consuming. In this paper, we propose an efficient
and effective online semi-supervised learning approach via
Budgeted Least Square (BLS). Specifically, we first derive both
closed-form transductive and inductive solutions for kernel
least squares classification in the semi-supervised setting. Then,
together with online kernel learning, BLS allows a concise
online update. Besides, the theoretical regret bound of BLS
is analysed, and empirical experiments on both static and
streaming data further demonstrate its superiority over state-
of-the-art algorithms.

Keywords-semi-supervised learning; online Learning; classi-
fication

I. INTRODUCTION

Although supervised learning has been successfully ap-

plied to many real-world applications, it requires to manually

label all training data [1]. The problem becomes more

challenging in the context of data streams. As a result, semi-

supervised learning (SSL) has been introduced. By imposing

some assumptions on unlabeled data (e.g., cluster assump-

tion or manifold assumption), a large body of approaches

have been proposed during the past decades. However, most

SSL models often work on static data, being difficult to

handle large-scale data sets. To design SSL models for large-

scale streaming data is thus of significant importance.

Different from model re-training, online SSL targets to

utilize both labeled and unlabeled instances to update the

model on the fly. Considering the uncertainty of unlabeled

data, many algorithms are equipped with online active

learning or selective sampling [2]. In the interest of utilizing

unlabeled data without resorting to their ground truth, one

simple way is to regard the predicted/pseudo labels as

their true labels [3]. However, such strategy could produce

the cumulative error if unlabeled instances are incorrectly

classified. To solve this problem, a mainstream idea is to

utilize the structural information of unlabeled data, which

can be broadly classified into two categories: cluster-based

model and online manifold model. The cluster-based model

tries to split arriving streaming data into several equal-

sized chunks and then perform clustering algorithm on

each chunk. Relying on the resulting clusters, the label

of a continously arriving test instance is predicted based

on some voting strategies among its neighboring clusters

[4]. Such models are quite intuitive, but they strongly rely

on the validity of the cluster assumption. Namely, the

calculation cost and classification accuracy heavily depend

on the chunk size and label purity of each cluster. As for the

online manifold model, it is usually a kernel-based method

with the adjacent information carried in an extra graph.

Therefore, it often involves maintaining an adaptive graph

(e.g., Laplacian matrix) during the whole online learning

procedure. In addition, to ease the optimization, the Rep-

resenter Theorem [5] is applied. It reduces the optimization

problem in manifold regularization, into a finite dimensional

problem of estimating the N expansion coefficients αi [6].

Afterwards, to avoid that α grows linearly with data size

N (Namely, the curse of kernelization [7]), budgeted kernel

learning is applied [8]. However, the space complexity of

online manifold model is usually quite large, because it

requires to maintain a budgeted kernel matrix K and a

Laplacian matrix L ∈ R
N×N (or a graph structure matrix

W ∈ R
N×N ) at the same time. This problem still exists,

even if some approximation strategies are further fapplied

[9]. Therefore, how to leverage the unlabeled instances to

enhance classification performance effectively and efficiently

in the online setting is still a big challenge.

In this paper, towards online SSL, we propose a novel

online semi-supervised classification algorithm via Budgeted

Least Square (BLS). Specifically, BLS is able to wrap

unlabeled information into a data-dependent kernel on the

fly, without constructing Laplacian matrix. Building upon

semi-supervised least squares classification, we derive both

closed-form transductive and inductive solutions. The former

solution performs label propagation on the kernel matrix

(instead of Laplacian matrix), while the latter, together with

budgeted kernel learning [10], provides a concise way to

update the model on the fly. Considering the label sparsity

of data stream, we employ two budgets for labeled and

unlabeled data. Also, two budget maintenance strategies are

proposed to break the curse of kernelization, including (1)

removing the oldest instance; (2) bounding the budget by

projection. The basic idea of BLS is that once any budget

overflows, the maintenance strategy would be triggered.

Besides, an incremental update method is adopted to make
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the calculation of model coefficients more tractable and the

theoretical regret bound is also provided. Finally, extensive

experimental results demonstrate that BLS not only outper-

forms the classical label propagation on the static datasets,

but also gains a higher prediction performance in the online

setting. The main contributions of this paper are as follows.

• Novel Semi-supervised Least Square: We first derive

both the transductive and inductive closed-form solu-

tion of semi-supervised least squares, and then extend

it into online setting. Also, we show our inductive

solution is related to the harmonic solution of Label

Propagation.

• Budgeted Online Learning: Resorting to budgeted

kernel learning, BLS is able to fully capture the struc-

tural information of unlabeled data without extra con-

straints. Beyond, an incremental method is introduced

to update the model, which makes BLS more scalable.

Finally, the regret bound of BLS is also provided.

II. RELATED WORK

Cluster-based Model. Building upon cluster assumption

(i.e., instances belonging to the same cluster share the

same label), cluster-based model performs clustering on both

labeled and unlabeled data in each data chunk. To ensure

the label purity of clusters, [11] employs semi-supervised

clustering on each data chunk, while [4] targets to measure

the cluster purity by information theory. Moreover, For the

purpose of better modelling concept drift, incremental deci-

sion tree is applied in [12]. They employ simple K-means

/ K-mode to create clusters at leaves and those clusters

are used as KNN classifiers and concept detectors. Finally,

as soon as any test instance arrives, cluster-based model

makes prediction by weighted voting among neighbourhood

clusters. They update cluster weight by its classification

performance on labeled data. However, the calculation cost

and accuracy of KNN depend on the chunk size and label

purity of each cluster. In addition, pseudo-labels of unlabeled

instances are reused to update KNN model [13], which

would bring about serious cumulative error, if unlabeled

instances are predicted incorrectly.

Online Manifold Model. Online manifold model utilizes

graph Laplacian L ∈ R
N×N to capture the structure infor-

mation of unlabeled data, where N is the number of pro-

cessed instances. On one hand, coarse graining [14] and data

quantization [15] are applied to maintain a compact repre-

sentation of the complete data adjacency graph. On the other

hand, the Representer Theorem [5] f(x) =
∑N

i=1 αik(xi,x)
is applied to ease the online manifold optimization into a

finite dimensional problem of estimating the N expansion

coefficients αi. For example, [6] optimizes online update

solution in primal space, but it totally ignores the increasing

size of Laplacian regularization and the kernelization. [16]

solves online problem by dual ascending procedure and

use buffering strategy to handle the curse of kernelization

problem. But it requires the prepared data similarity graph

W ∈ R
N×N , which results in a huge calculation cost. To

reduce the cost, [9] gives a SGD-based solution for semi-

supervised support vector machine, where the gradient is

approximated by uniformly edge sampling on graph W. In

summary, they need to maintain kernel expansion, but also

cost extra effort to maintain data graph.

III. PROPOSED METHOD

Notations: We use lower case letters as scalars (e.g., α),

lower case boldface letters as vectors (e.g., f ), upper case

letters as elements of a matrix (e.g., Uij) and boldface upper

letters as matrices (e.g., U). At i-th round, xi ∈ R
d describes

an d-dimensional input feature vector with yi ∈ {−1,+1}
being its label, if available. also, l and u are the number

of labeled and unlabeled instances, respectively. Finally,

notation [A,B;C,D] means block matrix

[
A B
C D

]
.

A. Semi-supervised Least Square and Novel Solutions

As a direct application of well-known least squares regres-

sion to the classification task, least squares classification fits

model f(xi) = xT
i w to encoded yi (±1) using standard

least squares data fitting. It predicts the label of xi by

sign(f(xi)). Formally, it optimizes the following problem.

min
f
‖ŷ − f‖22 + λΩ(f) (1)

where X ∈ R
N×d and ŷ ∈ R

N are the input training

data and corresponding labels, respectively. Here, f = Xw,

where w ∈ R
d is the model coefficient to learn and Ω(f)

is the regularization term. In the semi-supervised setting,

where data are partial labeled, semi-supervised least squares

problem optimizes the following non-convex problem.

min
f ,z
‖Y− f‖22 + λΩ(f) (2)

where Y = [y; z] and z is the predicted labels of unlabeled

instances. By introducing the manifold assumption on data,

Laplacian regularized least squares [17] is proposed by

setting Ω(f) = fTLf + ||f ||22. However, due to the space

complexity of L grows quadratically as a function of number

of instances, it is infeasible for large-scale data. To this end,

by setting Ω(f) = ||f ||22, semi-supervised least squares with

no explicit assumption is recently getting more attention

[18], [19]. However, those algorithms are limited to linear

classification in the static environment. In this paper, towards

online learning, we first enrich the expressiveness of semi-

supervised least squares with kernel extension, and then we

solve the problem by deriving a closed-form solution without

iteration, which lends BLS to handling large-scale data sets

in online setting.

In this paper, we assume that H is a Reproducing Ker-

nel Hilbert Space (RKHS) with a positive definite kernel

function k : X × X → R implementing the inner product
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〈·, ·〉. The inner product is defined so that it satisfies the

reproducing property, 〈k(x, ·), f(·)〉 = f(x). Practically, the

hypothesis f(x) can be written as a kernel expansion over

N training instances [5]. Namely, f(x) =
∑N

i=1 αik(xi,x).
Here, N = l + u. By adding a uniform prior on z to avoid

the trivial solution, we rewrite Eq. (2) as follows. Here K
is a kernel matrix.

min
α,z

‖Y−Kα‖22 + λ1α
TKα+ λ2 ‖z‖22 (3)

Note that Eq. (3) is equivalent to Eq. (2) when the linear

kernel is chosen. To solve the problem, established methods

such as [18], [19] optimize the model coefficient w and

label z of Eq. (2) in an iterative fashion (i.e., fixing z (or w),

solve w (or z) iteratively). Now, we show that a closed-form

solution could be obtained by one simple trick. Given z,

the first order optimality condition for convex optimization

yields:

α = (λ1I+K)−1
Y (4)

Inspired by [20], we formulate a quadratic approach,

equivalent to Eq. (3). Basically, instead of regarding α as

a constant when iteration optimization, we set α(λ1) =
(λ1I+K)−1

Y to be a variable, parameterized by λ1. Note

that α(λ1) fully characterizes the information of variable

z. Now, plugging α(λ1) back into to Eq. (3), we obtain a

penalized quadratic problem only involving z.

min
z

Y
T K̂Y+ λ2 ‖z‖22 (5)

where K̂ = I−K(λ1I+K)−1 = (I+K/λ1)
−1

. Rewriting

K̂ =

[
K̂ll K̂lu

K̂ul K̂uu

]
, we derive the closed-form transductive

and inductive solutions of semi-supervised least squares

problem without any iteration.

z = −(K̂uu + λ2I)
−1K̂uly (6)

α =
1

λ1
K̂[I;−(K̂uu + λ2I)

−1K̂ul]y (7)

Note that Eq.(6) presents a transductive solution for semi-

supervised least square problem. We remark that z does not

involve α, it only relates to the training data. Interestingly,

this solution is related to the standard label propagation

approach to semi-supervised learning on graphs (See Section

III-D1). On the other hand, Eq.(7) gives us an inductive so-

lution, which is irrelevant to the pseudo labels z of unlabeled

instances. It is optimized by fully exploiting the structural

information of both labeled and unlabeled instances, which,

in our case, refers to a better kernel construction. We remark

that α is solved without introducing extra graph Laplacian

constraint on unlabeled data.

Finally, kernelized semi-supervised least squares classifier

is given by sign(f(x)) = sign(αTK(X,x)). Note that our

proposed method is different from Manifold Regularization

[21], which only derives the inductive solution for Laplacian

regularized least squares. BLS gives both transductive and

inductive solution for semi-supervised least squares without

introducing the Laplacian matrix. Also, BLS is different

from [22], which defines a data-dependent kernel on RKHS

to penalize the complexity of semi-supervised model as

a regularization term. In this paper we focus more on

exploiting the modified kernel to explicitly learn the kernel

coefficient α and predicted labels z.

B. Budgeted Semi-supervised Least Squares

In this section, we extend BLS into the online setting

and the budgeted semi-supervised least square algorithm

is proposed to scale up to streaming data. Basically, after

receiving one unseen example xi at time i, BSLS makes

prediction based on current model fi−1. Afterwords, BSLS

refines fi−1 by updating the kernel coefficients α only,

while online manifold model simultaneously updates model

coefficients and calculates similarities between xi and all

(or part of) historical data. Given the curse of kernelization

[7], we turn to budgeted kernel learning [10] to bound the

growth of model size. In general, budgeted kernel learning

is supervised. It learns the kernel-based predictive model as

follows.

f(x) =

B∑
i=1

αik(xi,x)

Here, B is the size of budget. The existing budget online

kernel classification approach aims to bound the number

of support vectors by a budget constant B, using different

budget maintenance strategies. In this paper, we maintain

two budgets for semi-supervised online learning. Namely,

BL and BU for labeled and unlabeled instances, respectively,

where B = BL +BU .

f(x) =

B∑
i=1

αik(xi,x)

=

BL∑
i=1

αik(xi,x) +

BU∑
j=1

αjk(xj ,x)

Accordingly, if the number of labeled (or unlabeled)

instances in the budget overflows the pre-defined size, BL

(or BU ), a budget maintenance procedure is triggered to

maintain the model size. Otherwise, we simply add the

incoming instance into corresponding budget. However, this

update strategy is too aggressive and results in too many

updates once the budget is full. Therefore, we update the

model only when prediction is wrong or the prediction

confidence is low (yif(xi) ≤ 0 or |f(xi)| ≤ ε, where

ε ≥ 0 is a user-defined confidence threshold). To bound the

model size, we present two budget maintenance strategies,

including (1) removing the oldest sample; (2) merging xi

by projection.
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Remove the Oldest. In this strategy, once the size of

labeled or unlabeled part overflows its budget, the oldest

instance in the corresponding budget would be simply dis-

carded. Although it may change the hypothesis and decrease

its accuracy, it turns out to be an efficient way [23]. Also,

this strategy may be robust to concept drift, as it focuses

more on current data. For better understanding, we give its

pseudo-code in Algorithm 1.

Merging by Projection. Considering the information of

the removed vectors are completely vanished, the idea of

projection-based strategy is to preserve the information of

the removed instance. Instances are not discarded, instead

they are projected onto the space spanned by the previous

online hypothesis. Specifically, we denote current budget

size as b and current model f =
∑b

i=1 αik(xi, ·). Let

f ′ =
∑b+1

i=1 α
′
ik(xi, ·) be the model after adding new

instance xb+1 into corresponding budget, f ′′ = Pbf
′ denotes

the projection of f ′ onto the space spanned by previous b
budgeted instances. Here the projection Pb is an idempotent

(P 2
b = Pb) and linear operator.

Following [24], we obtain that f ′′ =
∑b

i α
′
ik(xi, ·) +

α′b+1Pbk(xb+1, ·). Here, Pbk(xb+1, ·) =
∑b

j djk(xj , ·) and

(d1, d2, ..., db) is a set of coefficients to learn. To bound the

model size, we use the projected hypothesis f ′′ as our next

hypothesis if the distance δ between f ′ and f ′′ is small.

‖δ‖22 = ‖f ′′ − f ′‖22
=

∥∥α′b+1(Pbk(xb+1, ·)− k(xb+1, ·))
∥∥2
2

By minimizing the projection distance δ, we obtain the

optimal coefficients d∗ = K−1
b kb+1, where

(Kb)ij = k(xi,xj), i, j ∈ b

(kb+1)i = k(xi,xb+1)

After substituting d∗ into ‖δ‖22, we have

‖δ‖22 = α
′2
b+1(k(xb+1,xb+1)− kT

b+1d
∗)

Thus the projection-based budget is updated by using the

following equation.

f ′′ =
b∑
i

α′ik(xi, ·) + α′b+1

b∑
j

d∗k(xj , ·)

In detail, the budget size of projection-based strategy is

not fixed, but is bounded (See Theorem 1 in [24]). We

utilize the model f ′′ if δ is smaller than a given threshold τ .

Otherwise, xb+1 would be added into corresponding budget,

depending on whether it is labeled or not. Considering the

sparsity of labeled data, we maintain an initial small budget

BL for labeled data. If BL is full or the received instance

is unlabeled, projection strategy is triggered. In summary,

we show pseudo-code of projection strategy in Algorithm

2. Although projection strategy suffers extra computational

cost to calculate d∗, it achieves a better accuracy due to the

Algorithm 1 Remove Oldest Strategy

1: if the incoming instance x is labeled then
2: Set BM = BL;

3: else
4: BM = BU

5: end if
6: if BM is full then
7: Remove the oldest instance from budget BM;

8: end if
9: Add new x into budget BM;

Algorithm 2 Projection Strategy

Require:
Projection threshold: τ

1: if x is labeled & BL is not full then
2: Add x into BL;

3: else
4: Calculate projection distance ‖δ‖22;

5: if ‖δ‖22 ≤ τ then
6: Update budget by f ′′;
7: else
8: Add x into corresponding budget;

9: end if
10: end if

Algorithm 3 Budgeted Least Square

Require:
Prediction Confidence: ε
Regularizations: λ1, λ2

Budget size: BL, BU

Budget strategy: S

1: for t = 1; t ≤ T ; t++ do
2: Receive xt and make prediction sign(f(xt));
3: if (yt is available & ytf(xt) ≤ 0) || (yt is not available

& |f(xt)| ≤ ε) then
4: Update budget by the strategy S;

5: end if
6: end for

reduced information loss. Finally, given two budgets and two

maintenance strategies, the pseudo-code of BLS is given in

Algorithm 3.

C. Efficient Update

Despite the effectiveness of BLS, it involves calculating

the inverse of the kernel matrix K, when updating the kernel

coefficients α (and computing d∗ for projection strategy).

In order to enable a greater scalability of our algorithm, we

introduce an efficient method to calculate it incrementally.

Given K−1
b , calculate K−1

b+1. This method is first intro-

duced by [25]. In this paper, without loss of generality, we
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denote K−1
b as the inverse of kernel matrix K+λI ∈ Rb×b,

where λ ≥ 0, xb+1 is the new coming instance. After the

addition of xb+1 into budget, the following equation holds

K−1
b+1 =

⎡⎣K−1
b 0

0
0 0 0

⎤⎦+
1

rb

[
ab
−1

] [
aTb −1] (8)

, where 0 ∈ Rb×1, rb = k(xb+1,xb+1) + λ − kT
b+1ab

and ab = K−1
b kb+1. Note that ab equals to the optimal

coefficients d∗ in projection strategy. Thus, without extra

calculation, d∗ is employed to update K−1
b+1 in Eq. (8).

Also, the matrix K can be safely inverted since it is always

full-rank by incremental construction. Lastly, owning to the

incremental evaluation of Eq. (8), the time complexity of

calculating the kernel inverse is reduced to O(b2).

Given K−1
b , Calculate K−1

b−1. Given Kb =[
k11 kT

2:b

k2:b Kb−1

]
, K−1

b =

[
g11 gT

2:b

g2:b Gb−1

]
, k11, g11 ∈ R and

k2:b,g2:b ∈ R
b−1, The equation holds

K−1
b−1 = Gb−1 − g2:bg

T
2:b

g11
(9)

The equation presents an elegant way to calculate the inverse

matrix after removing its first row and column. Therefore,

we always put kernel information of the oldest instance in

the first row and column of Kb. Namely, Kb is calculated

based on Xb = [x1,x2, ...,xb]
T , where x1 in the corre-

sponding budget is the oldest, x2 is the second oldest, and

so on. Unfortunately, if new data xb+1 is unlabeled and the

oldest data is labeled, the incremental strategy would fail

(The oldest unlabeled data should be removed in this case).

Therefore, we need to remove arbitrary row and column

of Kb incrementally. Inspired by [26], to remove instance

xi, i ≥ 2, we first exchange i-th row and column with

the first by matrix transformation. Denote Pi ∈ R
b×b and

Qi ∈ R
(b−1)×(b−1) as follows.

Pi =

⎡⎢⎢⎣
0 0 1 0
0 Ii−2 0 0
1 0 0 0
0 0 0 Ib−i+1

⎤⎥⎥⎦ ,Qi =

⎡⎣0 Ii−1 0
1 0 0
0 0 Ib−i

⎤⎦
Note that P−1

i = Pi and Q−1
i = QT

i . Here, Ij ∈ R
j×j

is a unit matrix and 0 is the all-zeroes matrix of adequate

dimensions. To remove arbitrary row and column of K−1
b ,

three steps are involved.

1) Calculate T−1
b = PiK

−1
b Pi to exchange i-th row and

column with the first.

2) Remove the first row and column of T−1
b by E.q. (9)

3) Finally, K−1
b−1 = QiT

−1
b−1Qi

D. Theoretical Analysis and Discussion

In this section, we analyse the connections between the

BLS and other algorithms, and give its regret bound [27],

which measures the performance of an online algorithm

relative to the performance of a competing prediction mech-

anism

1) Connection to Label Propagation: The label propaga-

tion minimizes �TL� under the constraints �i = yi for all

labeled data xi, where L is the un-normalized Laplacian of

the data similarity graph W and � is the vector of predic-

tions. In this case, label propagation yields the harmonic
solution [28] for unlabeled data.

�u = −(Luu)
−1Luly

Or regularized harmonic solution [29], where λ > 0 is a

parameter.

�u = −(Luu + λI)−1Luly

Suppose the eigen decomposition of L is
∑N

i=1 σivivi
T .

If 0 < σi < 1 holds for all i, the transductive solution z of
BLS is equivalent to the regularized harmonic solution when
K = λ1(L

−1− I) (Namely when K̂ = L). However, it does

not state that there is a underlying manifold assumption in

our proposed method.

2) Regret Bound Analysis: Now, we analyse the perfor-

mance of the BLS by providing its regret bound. Note that

this bound can be applied to both two budget strategies. To

ease the proof, we first rewrite model f(x) to the following

linear classification task on the new feature space, derived

from the kernel approximation.

f(x) =
B∑
i=1

αik(xi,x)

=
B∑
i=1

αiφ(xi)
Tφ(x) = wTφ(x)

Without loss of generality, we assume ‖φ(x)‖ ≤ 1. We

denote f(w) as the objective function of semi-supervised

least square. Formally let C be a closed convex set with

radius U , and w1, ...,wT be a sequence of vectors such that

w1 ∈ C and wt+1 ←
∏

C(wt−ηt�t−
t), where �t is the

gradient of f(w) at wt, ηt is a step size. Also, we define


t as a vector, presenting the weight degradation caused

by budget maintenance at t-th round. Finally
∏

C(w) is a

projection operation to C.

Theorem 1: Let w∗ be the optimal solution of Eq. (3)

after the kernel approximation. Define the gradient error

Et = 
t/ηt and assume ‖Et‖ ≤ 1. Define the average

gradient error as E = 1
T

∑T
t=1 ‖Et‖ and average step size

η = 1
T

∑T
t=1 ηt. Then, the following regret bound holds.

R(T ) =
1

T

T∑
t=1

ft(wt)− ft(w
∗)

≤ ((2λ1 + 1)U − 2)2

2
η + 2U

∥∥E∥∥
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Proof: Let Dt = ‖wt − u‖2 − ‖wt+1 − u‖2 be the

relative progress toward u at t-th round. By the definition

of wt+1, we have

Dt = ‖wt − u‖2 −
∥∥∥∥∥∏

C

(wt+1 −
t)− u

∥∥∥∥∥
2

≥ ‖wt − u‖2 − ‖wt+1 −
t − u‖
= −η2t ‖∂t‖22 + 2ηt�T

t (wt − u) + 2ηtE
T
t (wt − u)

, where ∂t = �t + Et and it’s bounded by

‖∂t‖ ≤ ‖�t‖+ ‖Et‖
= ‖(2λ1 + k(xt,xt))wt − φ(xt)ŷt‖+ ‖Et‖
≤ (2λ1 + 1)U + 2

In addition, by applying the property of strong convexity

of F , it follows:

�T
t (wt − u) ≥ ft(wt)− ft(u) +

λ1

2
‖wt − u‖2

Moreover, for any vector a and b, we have aTb
‖a‖‖b‖ ≥ −1.

The following equation holds.

ET
t (wt − u) ≥ −‖Et‖ ‖wt − u‖ ≥ −2U ‖Et‖

Thus, by setting Qt = ft(wt)− ft(u), we have:

Qt ≤ Dt

2ηt
−λ1

2
‖wt − u‖2+ ηt

2
((2λ1+1)U+2)2+2 ‖Et‖U

Note that according to the definition of Dt, we could
replace w∗ with u. Therefore, summing over all T , we have
the upper bound of the cumulative regret TR(T ). As for the
first two terms of the upper bound, we have

1

2

T∑

t

Dt

ηt
− λ1 ‖wt −w∗‖2

=
1

2
(
1

η1
− λ1) ‖w1 −w∗‖2 + 1

2

T∑

t=2

(
1

ηt
− 1

ηt−1
− λ1) ‖wt −w∗‖2

− 1

2ηT
‖wT+1 −w∗‖2

Here, we choose λ1 = max( 1
ηt
− 1

ηt−1
, 1
η1
) for all t. Then

the above equation is bounded by:

1

2

T∑
t

Dt

ηt
− λ1 ‖wt −w∗‖2 ≤ − 1

2ηT
‖wT+1 −w∗‖2 ≤ 0

Finally, we concludes the proof by plugging it back to the

definition of R(T ).

R(T ) =
1

T

T∑
t=1

Ft(wt)− Ft(w
∗)

≤ ((2λ1 + 1)U − 2)2

2
η + 2U

∥∥E∥∥
Note that, instead of employing gradient descent, wt+1 in

BLS is given by directly minimizing. So we utilize ηt�t ≈

wt −wt+1 = �w and estimate ηt by minimizing ||�w −
η�t||22, where ||�w|| ≤ 2U . The solution yields ηt =

�T
t �w
||�t|| .

We further use λ1 to control the L2 norm of w such that η
should not be too large. Therefore, BLS has linear regret.

IV. EXPERIMENT

In this section, we establish quantitative experiments to

prove the performance of BLS on real-world datasets. All

datasets are available at the LIBSVM homepage1, the SSL

Benchmarks homepage2 and the UCI Machine Learning

Repository3.

A. Transductive Learning On Static Datasets

Selection of Comparison Methods. Since BLS is con-

nected to the Label Propagation, we conduct the transductive

experiment and compare our algorithm with GFHF [28] (we

denote it as LP), and regularized label propagation [29] (we

denote it as RLP). Basically, LP and RLP perform the label

propagation on the Laplacian matrix, while BLS performs

on the kernel matrix.

Experimental Setup. In our experiment, BLS uses linear

kernel and RBF kernel with kernel width σ2 being the

average distance among instances. Also, we use the same

RBF kernel to measure similarity matrix W for LP and

RLP, which is a popular choose. As for the regularization

parameters of RLP and BLSL, we tune in {10, 1, 0.1, 0.01}
and the best results are recorded. For all data sets, only 10%

and 20% instances are randomly labeled and the rest remains

unlabeled. Note that all comparing approaches work on the

same data. Finally we run each method ten times to produce

the average classification accuracy and standard deviation.

The experimental results are shown in Table I. Apparently,

BLS outperforms both LP and RLP on most of datasets.

One possible reason is that graph-based SSL, such as LP

and RLP, capitalizes the abundance of unlabeled data based

on the manifold assumption. However, this assumption may

not hold on the real-world dataset and hence leads to a

performance decrease. For a better illustration, we evaluate

above methods on a synthetic data, shown in Fig 1. Here, two

noisy manifold curves are generated and only 1% data are

randomly labeled. Without parameter tuning, regularization

parameters for all algorithms are set to be 1. We can

observe that LP and RLP fail to obtain a good classification

performance on the most noisy data region, while BLS yields

a better result. Therefore, it is not surprised to see that BLS

outperforms LP and RLP on both synthetic and real-word

data sets.

B. Evaluation On Streaming Datasets

Selection of Comparison Methods. We compare with

two recent online SSL approaches, SPASC [30] and ReSSL

1https://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/
2http://olivier.chapelle.cc/ssl-book/benchmarks.html
3http://archive.ics.uci.edu/ml/
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(a) Raw data (b) BLS (c) LP (d) RLP

Figure 1: Prediction illustration of different methods. Here the � and the � are labeled and the rest are unlabeled. Predicted

classes are plotted in different color. Basically, LP and RLP fail to obtain a good classification performance on the most

noisy data region, while BLS yields a better result.

(a) phishing + 10% labeled (b) phishing + 20% labeled (c) skin + 10% labeled (d) skin + 20% labeled data

Figure 2: Cumulative error rate of different kinds of model with 10% and 20% labeled data. Note that the lower the curve,

the better the performance

(a) Tune λ1 with 10% labels (b) Tune λ2 with 10% labels (c) Tune λ1 with 20% labels (d) Tune λ2 with 20% labels

Figure 3: Sensitivity experiment on regularization parameters. We choose λ1 (λ2) from {0.01, 0.1, 1, 10, 100, 1000}, while

λ2 (λ1) is fixed to be 1 and budget size is also fixed (BL = 150,BU = 300).

[4] and we also compare with one well-known supervised

online model, PA [31], as a baseline.

Experimental Setup. To cope with the curse of ker-

nelization problem, BLS needs to pre-define the budget

size for BL and BU. In our experiment, we simply set

BL = 150,BU = 300. For projection strategy, we set

threshold τ = log(t) ∗ |f(xt)| such that τ reduces with

more instances being observed. Also, if |f(xt)| is low, xt

would have larger chance to be added into the budget. We

set ε = 0.25 and use the same setting as last subsection

for the rest parameters (Here, we randomly sampled 10000

instances to calculate their mean distance, used as σ2).

As for others, PA is parameter-free. We tune batch size for

SPASC in {50, 100, 500, 1000} and the number of clusters

in range from 5 to 50 with step size being 5. Furthermore,

the parameters of ReSSL are set to be the value suggested in

the paper. We repeat each experiment ten times to produce

the average classification accuracy and standard deviation.

Each time we randomly label 10% and 20% instances and

all comparing approaches work on the same data.

The experimental results are presented in Table II. We

mark the best result in bold font and underline the second

best. We also show the results with respect to the round

of online learning in Fig 2. Because of space limitations,

we only show results on the phishing and skin datasets. In

summary, compared with others, BLS gains a higher predic-

tion performance. Interestingly, It seems that the projection-

based strategy outperforms the remove-based strategy with

smaller budget size, which indicates the superiority of retain-

ing more information by projection strategy. Furthermore,

we observe that the performance of BLS is always better

than the baseline PA, while SPASC and ReSSL sometimes

are worse. One possible reason, apart from the underlying

difference between max margin model and KNN classifier,
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Table I: The transductive accuracy (%) on 10% and 20% labeled data. Note that BLS is connected to the Label Propagation,

therefore we compare our algorithm with GFHF [28] (denoted as LP), and regularized label propagation [29] (denoted as

RLP). To be clear, we use bold font to mark the best results and underline the second best.

Data Inst Dim.
BLS LP RLPRBF Linear

Sonar 208 60
20% 80.06±3.05 71.99±2.81 58.61±9.49 68.55±4.59
10% 70.43±4.45 67.11±3.62 50.59±6.61 59.79±7.76

Ionosphere 351 34
20% 87.47±2.29 82.31±1.96 63.81±0.75 63.81±0.75
10% 84.27±2.51 81.20±1.49 63.92±0.87 64.15±1.11

Wdbc 569 30
20% 90.00±0.85 94.62±0.93 22.88±23.25 92.68±1.12
10% 87.40±2.29 92.93±1.24 23.01±23.93 91.17±1.86

Australian 690 14
20% 86.30±0.92 86.29±1.20 66.85±13.68 77.84±10.23
20% 85.01±1.28 85.96±1.43 60.85±11.38 74.40±12.72

Diabetes 768 8
20% 69.95±2.06 67.57±1.83 64.89±12.97 70.99±1.59
10% 69.55±1.12 66.34±2.46 66.82±11.13 70.84±1.82

FourClass 862 2
20% 89.10±1.49 68.77±0.92 64.51±1.02 64.51±1.02
10% 88.08±2.92 69.15±1.20 64.37±0.61 64.37±0.61

BankNote 1372 4
20% 99.80±0.31 94.62±0.73 90.86±3.60 97.76±0.84
10% 99.34±0.45 94.40±0.83 76.06±11.55 94.46±3.86

G241n 1500 241
20% 78.64±5.31 80.02±1.90 56.85±9.31 78.14±5.72
10% 76.56±3.07 76.93±1.36 55.48±9.92 76.35±3.28

G241c 1500 241
20% 76.01±7.31 79.88±1.01 55.62±9.12 75.57±7.89
10% 70.47±6.50 77.32±1.44 52.30±7.41 69.89±6.86

Digit1 1500 241
20% 97.25±0.48 94.85±0.75 68.08±11.84 79.51±12.22
10% 95.40±0.95 92.97±1.02 51.64±3.70 61.61±14.23

USPS 1500 241
20% 95.43±0.53 90.28±0.51 80.17±0.33 80.29±0.37
10% 92.87±1.19 88.64±0.90 79.95±0.31 80.00±0.37

a1a 1605 123
20% 82.38±0.42 82.51±0.52 75.55±0.46 75.55±0.46
10% 81.08±1.22 81.37±0.91 75.38±0.36 75.38±0.36

w1a 2477 300
20% 97.52±0.27 88.86±0.49 97.14±0.18 97.14±0.18
10% 97.36±0.29 88.80±0.28 97.12±0.10 97.12±0.10

mushrooms 8124 112
20% 99.97±0.05 99.91±0.08 89.76±0.35 89.89±0.22
10% 99.77±0.25 99.76±0.18 84.28±8.95 89.35±0.33

Table II: The online classification accuracy (%) on 20% and 10% labeled data. Bproj and Brm indicate the total budget

size (including the labeled and unlabeled budget, BL and BU) of projection-based and remove-based strategy, respectively.

Data Inst./Dim. PA ReSSL SPASC BLS (RBF)
Heuristic Bayesian Remove Brm Project Bproj

phishing 11055/68
20% 90.48±0.41 89.21±0.40 78.32±2.00 76.78±1.54 90.95±0.36 450 92.49±0.25 204.9±6.9
10% 88.84±0.57 87.08±0.40 78.00±1.43 78.49±1.21 91.64±0.30 450 92.08±0.34 182.0±6.9

a6a 11220/123
20% 78.00±0.51 77.68±0.32 79.27±0.69 79.25±0.70 77.03±0.34 450 81.31±0.73 183.9±43.5
10% 78.10±0.75 78.05±0.50 78.50±1.47 78.46±1.45 77.98±0.59 450 80.83±0.97 168.4±22.8

a7a 16100/123
20% 78.38±0.34 77.50±0.35 79.58±0.45 79.60±0.47 76.94±0.24 450 81.22±0.76 173.2±10.1
10% 78.06±0.53 77.54±0.50 80.05±1.03 79.72±1.46 77.20±0.49 450 80.83±0.79 181.3±33.2

w6a 17188/300
20% 96.94±0.00 95.49±0.53 97.04±0.03 97.03±0.03 97.09±0.20 450 97.13±0.15 182.2±21.7
10% 96.95±0.00 94.30±0.70 96.79±0.65 97.01±0.05 97.21±0.09 450 97.07±0.15 164.1±8.4

a8a 22696/123
20% 78.33±0.38 77.59±0.32 78.62±1.13 78.60±1.12 76.79±0.37 450 81.59±0.67 250.8±112.8
10% 78.19±0.47 77.90±0.28 78.34±1.56 78.29±1.57 77.33±0.41 450 81.44±0.74 192.0±50.1

w7a 24692/300
20% 96.99±0.02 95.54±2.19 97.12±0.04 97.12±0.04 96.66±0.19 450 97.28±0.12 183.1±11.6
10% 97.00±0.00 93.38±4.47 97.18±0.09 97.19±0.09 97.24±0.12 450 97.12±0.13 164.8±9.0

a9a 32561/123
20% 78.78±0.27 77.03±0.32 78.80±0.79 78.69±0.90 77.11±0.23 450 82.09±0.33 194.8±21.2
10% 78.40±0.31 77.59±0.34 78.29±1.51 78.65±1.06 77.15±0.33 450 81.51±0.61 183.0±55.5

electricity 45312/8
20% 56.90±0.28 59.55±3.04 56.87±1.14 57.17±1.56 65.13±0.31 450 68.39±3.46 216.0±23.2
10% 56.35±0.28 59.67±1.28 57.31±1.23 57.08±1.24 65.03±0.33 450 68.97±1.73 197.7±5.9

w8a 49749/300
20% 97.03±0.00 94.80±0.68 97.17±0.02 97.17±0.02 96.76±0.06 450 97.28±0.16 221.0±21.6
10% 97.03±0.00 94.11±0.45 97.09±0.09 97.16±0.06 96.68±0.24 450 97.24±0.15 186.0±18.5

ijcnn1 49990/22
20% 89.38±0.14 92.08±0.31 89.86±0.05 89.89±0.04 92.66±0.24 450 95.78±0.11 529.0±14.9
10% 91.64±0.30 91.23±0.16 89.15±0.56 89.26±0.59 92.76±0.31 450 94.91±0.30 375.9±12.9

cod-rna 59535/8
20% 76.80±0.64 89.16±2.65 72.91±2.28 75.71±1.52 79.19±0.23 450 85.64±0.68 185.0±61.1
10% 75.69±0.51 88.70±3.23 75.32±1.88 75.60±2.14 79.46±0.42 450 86.17±0.57 153.0±2.4

skin 245057/3
20% 79.34±0.05 85.66±0.43 93.58±0.93 95.27±0.32 99.73±0.01 450 99.73±0.01 217.5±21.3
10% 79.38±0.16 87.79±1.54 94.40±1.03 96.12±1.20 99.62±0.01 450 99.54±0.14 204.3±15.0

may be the inconsistency between real-word data and model

assumption. In summary, BLS is more robust, and hence

ensures the high empirical performance on real-word data

sets.
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C. Sensitivity Analysis

Budget size. We investigate the influence of the budget

size (i.e., BL and BU) to the learning performance. Since

the budget size of projection strategy is chosen adaptively,

here we only vary the value of BL and BU for remove-

based strategy. Basically, the bigger the budget, the more

information we preserve. We show how the change of

parameters influences the classification performance on the

data set a6a with 10% (See Fig. 4(a)) and 20% labeled

data (See Fig. 4(b)). Basically, we tune BL (or BU)

in {50, 100, 150, 200, 250, 300} while fixing the value of

BU = 300 (or BL = 150). Note that regularization

parameters are set to be one in all experiments for simplicity.

All experiments work on the same data and the prediction

accuracy is recorded. It can be observed that when increasing

the labeled budget size BL or the unlabeled budget size BU,

the classification accuracy tends to increase. The boost is

more significant for BL, since more discriminative informa-

tion are preserved to train a better classifier.

Regularization parameters. BLS has two regularization

parameters, i.e. λ1, punishing the model complexity and λ2,

which is a label prior parameter. We now investigate how

performance change when λ1 and λ2 vary. Basically, we

choose λ1 (λ2) to be {0.01, 0.1, 1, 10, 100, 1000}, while λ2

(λ1) is set to be 1 and budget size is also fixed (BL =
150,BU = 300). Figure 3 illustrates the performance of

tuning λ1 (See Fig. 3 (a) and (c)) and tuning λ2 (See Fig.

3 (b) and (d)) on 10% and 20% labeled data. It can be

observed that λ1 is relatively more sensitive comparing to

λ2. With the growth of λ1, we put larger penalty on model

complexity. On one hand, too large value of λ1 harms the

expressiveness of our model, and hence hurt the accuracy.

On the other hand, complex model tends to overfit budgeted

instances. Theoretically, according to the proof of our regret

bound, λ1 = max( 1
ηt
− 1

ηt−1
, 1
η1
), ∀t ∈ T may be a nice

choose. but it requires to derive the mapping function for the

user-specified kernel. Further more, λ2 measures the label

uncertainty and assigns uniform prior to unlabeled data. As

is shown in the figure, projection based strategy is more

robust to the change of λ2. Generally, the absolute predicted

value |f(x)| inclines to be small if λ2 is large. Since

we use τ = log(t)|f(x)| to be the projection threshold,

larger λ2 could trigger more budget update, and hence more

information is preserved to refine model on the fly. Thus, the

selection of λ1 remains to be a trade-off problem between

overfitting and underfitting.

V. CONCLUSION

In this paper, towards online semi-supervised learning,

we propose a novel budgeted semi-supervised least square

for online classification, called BLS. Building on semi-

supervised kernel least square, we derive its closed-form

transductive and inductive solutions. The former is related

(a) On 10% labels (b) On 20% labels

Figure 4: Sensitivity experiments when varying the size of

the two budgets. Since the budget size of projection strategy

is chosen adaptively, we only vary the value of BL and BU

for remove-based strategy.

to the regularized harmonic solution of the Label Prop-

agation on kernel matrix, while the latter, together with

budgeted kernel learning, provides a concise method to

update the model without extra constraints on unlabeled

data. Considering the label sparsity, we use two budgets

for labeled and unlabeled data respectively and two budget

maintenance strategies are proposed. Meanwhile, in order to

more efficiently update the model on the fly, BLS adopts an

incremental method to calculate the inverse of the kernel

matrix. Also, we derive the theoretical regret bound of

BLS for the comprehensive understanding. Finally, exten-

sive experimental results demonstrate that BLS not only

out-performs the classical label propagation on the static

datasets, but also gains a higher prediction performance in

the online experiments.
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