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Abstract. Clustering high-dimensional data is challenging since mean-
ingful clusters usually hide in the arbitrarily oriented subspaces, and
classical clustering algorithms like k-means tend to fail in such case. Sub-
space clustering has thus attracted growing attention in the last decade
and many algorithms have been proposed such as ORCLUS and 4C.
However, existing approaches are usually sensitive to global and/or local
noisy points, and the overlapping subspace clusters are little explored.
Beyond, these approaches usually involve the exhaustive local search for
correlated points or subspaces, which is infeasible in some cases. To deal
with these problems, in this paper, we introduce a new subspace cluster-
ing algorithm called RAOSC, which formulates the Robust Arbitrarily
Oriented Subspace Clustering as a group structure low-rank optimization
problem. RAOSC is able to recover subspace clusters from a sea of noise
while noise and overlapping points can be naturally identified during the
optimization process. Unlike existing low-rank based subspace cluster-
ing methods, RAOSC can explicitly produce the subspaces of clusters
without any prior knowledge of subspace dimensionality. Furthermore,
RAOSC does not need a post-processing procedure to obtain the clus-
tering result. Extensive experiments on both synthetic and real-world
data sets have demonstrated that RAOSC allows yielding high-quality
clusterings and outperforms many state-of-the-art algorithms.
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1 Introduction

In high-dimensional data set, meaningful clusters usually hide in the arbitrar-
ily oriented subspaces, i.e., subsets of points showing linear correlations among
subsets of dimensions [11]. To explain this idea, consider a real-world example
illustrated in Fig. 1. The 2D plot represents a Height/Weight Standard1, which
consists of two subspace clusters of male and female, respectively. In contrast to

1 http://www.angelo.edu/dept/rotc/height weight chart.php.
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Fig. 1. A real-world example of subspace clustering. C1 and C2 are two subspace
clusters.

the classical clustering, points are grouped into the same cluster because they
exhibit high correlation (i.e., they locate near the same line or plane), rather
than closeness. Only when projecting the points into the subspace orthogonal
to the plane where they are lying in, they will exhibit high density. Since each
cluster lies in an arbitrarily oriented subspace, it is referred to as arbitrarily
oriented subspace clustering or correlation clustering.

Clustering a 2D data is just a piece of cake, but how about a high-dimensional
data having dozens or hundreds of attributes? In such case, detecting subspace
clusters is a challenging task since many dimensions are irrelevant and only a
few of dimensions truly contribute to the cluster structure. The word “Rele-
vant” means that a cluster shows high correlation in and only in these relevant
dimensions. More importantly, the relevant dimensions often differ largely for
different clusters [11]. Therefore, global dimensionality reduction methods like
Principal Component Analysis (PCA) cannot be used to preserve the subspace
cluster structure. To tackle this problem, most approaches adopt certain assump-
tions/heuristics and start from a local search of subspaces and clusters.

During the past decade, many subspace clustering approaches have been pro-
posed from various perspectives. The earliest attempt is to heuristically exam-
ine all possible axis-parallel subspaces and identify clusters, algorithms include
CLIQUE [4], ENCLU [7], PROCLUS [2], SUBCLU [10], DUSC [5], to name
a few. However, these algorithms can only find axis-parallel subspace clusters.
Afterwards, arbitrarily oriented subspace clustering emerges. Most of these algo-
rithms rely on the search of local correlated points to identify clusters and sub-
spaces. Algorithms include, for examples, ORCLUS [3], 4C [6], CURLER [21],
SSCC [9], FOSSCLU [8], ORSC [18] and CoSync [19]. However, most previous
solutions of finding suitable subspaces work well if and only if subspace clusters
are locally well separated and no noise/outlier points exist. In the presence of
noise/outliers in the local neighbourhood of cluster points or cluster representa-
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tives in the entire feature space, most previous methods fail to detect meaningful
subspace clusters. Besides, due to the (exhaustive) heuristic local search, they
are generally time consuming especially when the dimensionality is high.

In contrast to previous methods that use certain heuristic ways to search
subspace clusters, we turn to formulate the subspace clustering task as a group
structure low-rank optimization problem. The key idea is to assign data points
to clusters to meet the correlation and closeness criteria. Specifically, if we
examine an arbitrarily oriented subspace cluster w.r.t. its relevant dimensions,
we find these cluster objects exhibit a high correlation. Meanwhile, when pro-
jecting these cluster objects into the orthogonal complementary space spanned
by the irrelevant dimensions, they exhibit a high closeness. We argue that tak-
ing both of the correlation and closeness into account improves the robustness.
Motivated by the observations, in this paper, we propose a new subspace cluster-
ing algorithm called RAOSC, which formulates the Robust Arbitrarily Oriented
Subspace Clustering as a group structure low-rank optimization problem. It has
several attractive properties. Firstly, since the optimization does not rely on the
local search, it is more efficient. Furthermore, the optimization problem well char-
acterizes the two criteria of correlation and closeness simultaneously where most
previous methods only consider the correlation criterion. This makes RAOSC
more robust to noisy objects or outliers. Inspired by [17], we develop an effective
and efficient optimization algorithm to solve RAOSC. During the optimization
process, noise and overlapping points can be naturally identified. Last but not
least, unlike the previous low-rank representation (LRR) based subspace clus-
tering methods [12,13] that cannot give explicit subspaces of clusters and need a
two-step algorithm to do clustering, RAOSC is able to find explicit subspace for
each cluster without knowing the subspace’s dimensionality. It directly obtains
the discrete cluster membership indicators by the optimization, no further post-
processing procedure is needed. In summary, the main contributions of our work
are listed as follows.

– We formulate the identification of arbitrarily oriented subspace clustering as
an optimization problem by exploiting two intrinsic properties of a subspace
cluster: correlation and closeness. We integrate the two properties and
formulate a group structure low-rank model for subspace clustering.

– We develop an effective and efficient optimization algorithm for RAOSC. Dur-
ing the optimization process, noise and overlapping points can be naturally
identified. To the best of our knowledge, for arbitrarily oriented subspace clus-
tering problem, we are the first to handle both noise and overlapping points
in one unified framework.

– We perform extensive experiments on synthetic and real-world data sets and
compare with the state-of-the-art algorithms to demonstrate the effectiveness
of our approach.
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2 The Proposed Method

2.1 Problem Formulation

Formally, let X ∈ R
m×n be a data matrix of n instances with m dimensions,

the objective of this study is to find k overlapping arbitrarily oriented subspace
clusters {C1, C2, . . . , Ck}, and a noise point set C0. Xi is a matrix containing
data points in cluster Ci. For each cluster, we use a diagonal indicator matrix
Pi ∈ {0, 1}m×m to indicate the relevant dimensions in the original space, and
use P̄i = I−Pi to indicate the irrelevant dimensions, where I denotes an identity
matrix. Specifically, PT

i Xi sets the rows of Xi corresponding to the irrelevant
dimensions to zero, and leaves the rest of the rows corresponding to the relevant
dimensions untouched, which extracts the axis-parallel relevant dimensions of
Xi. Since subspace clusters may accommodate in arbitrarily oriented subspaces,
thereby, inspired by [14], an orthonormal rigid rotation matrix Si ∈ R

m×m is
further introduced. Si rotates the i-th cluster so that its relevant dimensions
align to the parallel axes. Combine these two matrices, PT

i S
T
i Xi is thus used to

characterize the relevant subspace for the cluster Ci. Finally, we use a diagonal
matrix Gi ∈ {0, 1}n×n to indicate the corresponding cluster membership, where
Gi(j, j) = 1 if the j-th data point is grouped into the i-th subspace cluster,
and 0 otherwise. Thus XGi leaves the columns corresponding to the i-th cluster
points untouched and sets the others to zero. Therefore, for a given data set, the
subspace clustering is conducted by learning the three matrices for each cluster.

2.2 Clustering via Correlation and Closeness

In this study, we consider that a subspace cluster should satisfy two criteria:
correlation and closeness. Specifically, we first refer to the subspace spanned
by the relevant dimensions as the correlation space, the subspace spanned by the
irrelevant dimensions as the cluster space. Note the two subspaces are orthogonal
complementary to each other w.r.t. the full space. Data points in a subspace
cluster should show high correlation in the correlation space. Meanwhile, they
should be as close as possible when projecting them into the cluster space. By
contrast, most existing approaches only consider the correlation for subspace
clustering. To illustrate this basic idea, Fig. 2 gives a toy example. Figure 2(a)
shows that data points in a subspace cluster should locate near an arbitrarily
oriented 2D plane in the full 3D space (i.e., strong correlation). In addition, data
points are close to each other when projecting them into the cluster space (i.e.,
high closeness) (see Fig. 2(b)). In the following, we will formulate our objective
function in terms of the two criteria.

For the i-th cluster, we assume that we can find an orthonormal rigid rotation
matrix Si [14], which rotates the original space and thus the first di dimensions
span the correlation space accommodating all data points in the i-th cluster
(e.g., S in Fig. 2). And the last (m − di) dimensions span the cluster space (e.g.,
R3\S in Fig. 2). Note that the dimensionality di is not a parameter that needs
to be manually set. It is automatically determined in the optimization process.
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(a) High correlation. (b) High closeness.

Fig. 2. Illustration of subspace clustering with criteria of correlation and closeness in
correlation space S and cluster space R3\S.

Accordingly, we use two diagonal indicator matrices Pi and P̄i defined as follows
to split the two subspaces.

Pi =
[
Idi

0m−di

]
, P̄i =

[
0di

Im−di

]
. (1)

A data point x can project into the correlation space and the cluster space by
PT

i S
T
i x and P̄T

i S
T
i x, respectively.

Since we require closeness of a cluster in the cluster space, one intuitive option
is to minimize the pairwise distance of all cluster points, which can be formulated
as

∑
x,y∈Ci

||P̄T
i S

T
i x−P̄T

i S
T
i y||. To characterize the correlation in the correlation

space, we consider a group structure low-rank model, i.e., a group of data points
in the same cluster are low-rank in the full-dimensional space. We can minimize
the ranks of clusters to find subspace clusters. That is, min

C
∑k

i=1 rank(Xi)2.

Since multiplying an orthogonal matrix, and discarding the irrelevant dimensions
of a subspace cluster in the full-dimensional space do not change the rank, we
can equivalently write it as min

P,S,C
∑k

i=1 rank(PT
i S

T
i Xi)2. Note the square on the

rank function is used to avoid trivial solution as discussed in [17]. We formulate
the problem as the following objective function.

min
P,S,C

k∑
i=1

(
rank(PT

i S
T
i Xi)2 +

∑
x,y∈Ci

||P̄T
i S

T
i (x − y)||

)

s.t. ∀ 1 ≤ i ≤ k, ST
i Si = I.

(2)

We use an alternative diagonal indicator matrix Gi to rewrite Eq. (2) as
follows.
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min
P,S,G

k∑
i=1

(
rank(PT

i S
T
i XGi)2 +

∑
x,y∈Ci

||P̄T
i S

T
i (x − y)||

)

s.t.

k∑
i=1

Gi � I,
k∑

i=1

Tr(Gi) = kl,

∀ 1 ≤ i ≤ k, Gi ⊆ {0, 1}n×n,ST
i Si = I,

(3)

where the term
∑k

i=1 Gi � I and
∑k

i=1 Tr(Gi) = kl ensure that each data point
has to be assigned to at least one group, and some data points can be assigned
to multiple groups to allow overlapping clustering. l is an integer parameter that
controls the degree of overlapping, which is within the range of [n/k, n]. l = n/k
means no overlapping clusters, l = n is complete overlapping (i.e., each data
point belongs to all clusters). Since l depends on the number of data points
so that it is not convenient to set, we use a variable substitution trick which
replaces l with l̃ ∈ [0, 1]. It stands for the proportion of the overlapping data
points, where l =

⌊
l̃n(k−1)+n

k

⌋
.

Since the rank minimization problem is NP-hard, the common practice is to
relax the rank function to the nuclear norm. However, inspired by [17], we use
the Schatten-1 norm for relaxation. Schatten-1 norm is numerically equal to the
nuclear norm, but it can be more efficiently optimized by adopting certain strat-
egy. In addition, finding an optimal cluster assignment on the minimization of
all pairwise distances (i.e.,

∑
x,y∈Ci

||P̄T
i S

T
i x−P̄T

i S
T
i y||) is also computationally

infeasible. We relax it by minimizing distances between data points and cluster
centroids. Thereby, the second term can be relaxed as a k-means style term. The
overall objective function is given as follows.

min
P,S,G,M

k∑
i=1

((∣∣∣∣PT
i S

T
i (X − Mi)Gi

∣∣∣∣p
Sp

)2

+ α
∣∣∣∣P̄T

i S
T
i (X − Mi)Gi

∣∣∣∣2
F

)

s.t.
k∑

i=1

Gi � I,
k∑

i=1

Tr(Gi) = kl,

∀ 1 ≤ i ≤ k, Gi ⊆ {0, 1}n×n,ST
i Si = I,

(4)

where ||X||pSp = Tr((XXT )
p
2 ) is the Schatten-p norm of matrix X, and we take

p = 1 in this study. Mi = μi1T
n , μi is the mean vector of the i-the cluster. Using

X − Mi to replace X at the first term is to make the rank approximation more
robust [17]. α > 0 is a real number parameter to balance the dimensionality of
the correlation space and the cluster space, which will be discussed later.

2.3 Optimization Algorithm

To solve the optimization problem, we use an iterative algorithm to update Pi,
Si, Gi and Mi one at a time while fixing the others to achieve a local optimum.
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Updating G. Let O denote the objective function Eq. (4), we write the
Lagrange function of Eq. (4) w.r.t. variables G as follows.

L(G, Λ) = O(G) + g(Λ,G), (5)

where Λ is the Lagrange dual variable, g(Λ,G) encodes the constraints on G in
problem Eq. (4).

By taking the derivative of Eq. (5) w.r.t. G, and setting it to zero, we have:

k∑
i=1

2AiGi +
∂g(Λ,Gi)

∂Gi
= 0, (6)

where Ai and Bi are:

Ai = X̃T
i SiPiBiPT

i S
T
i X̃i + αX̃T

i SiP̄2
iS

T
i X̃i, (7)

Bi = p
∣∣∣∣PT

i S
T
i X̃iGi

∣∣∣∣p
Sp

(PT
i S

T
i X̃iG2

i X̃
T
i SiPi)

p−2
2 . (8)

X̃i = X − Mi. Ai and Bi depend on Gi. It can be solved via an iteration
based re-weighted algorithm [16,17]. We first calculate Ai and Bi based on the
current Gi. After Ai and Bi are fixed and treated as constants, we can solve
the following problem which satisfies Eq. (6) to update Gi.

min
G

k∑
i=1

Tr(GT
i AiGi)

s.t.

k∑
i=1

Gi � I,
k∑

i=1

Tr(Gi) = kl,

∀ 1 ≤ i ≤ k, Gi ⊆ {0, 1}n×n.

(9)

Due to the diagonality and the discrete constraints of Gi, Eq. (9) can be
equivalently written as:

min
g

k∑
i=1

n∑
j=1

aijgij

s.t.

k∑
i=1

gij ≥ 1,

k∑
i=1

n∑
j=1

gij = kl,

∀ 1 ≤ i ≤ k, 1 ≤ j ≤ n, gij ∈ {0, 1},

(10)

where gij is the j-th diagonal element of matrix Gi, aij is the j-th diagonal ele-
ment of matrix Ai. The objective function above derives a 0-1 integer program-
ming problem, which is usually NP-hard. Fortunately, the constraints imposed
on gij significantly reduce the searching space, we can still obtain an efficient
algorithm to solve this problem. Firstly, for every data point, we assign clus-
ter i which has the minimum aij value to the j-th data point. This ensures
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every data point has been assigned to one cluster. Afterwards, we deal with the
remaining (kl − n) overlapping data points. We sort the remaining aij in an
ascending order, then record the first (kl − n) subscripts (ij) of aij and set the
corresponding gij = 1.

Meanwhile, noise can be naturally identified during the cluster membership
assigning process. We additionally let G0 denote the noise indicator matrix,
G0(j, j) = 1 if data point j is a noise, otherwise 0. Given the current cluster
indicator vector gi for the i-th cluster, we first collect all aij which satisfy gij = 1,
then find their median mi. A data point j in the i-the cluster is a noise, if
aij > λmi, where λ > 0 is a real number parameter. The rationale is, if we closely
look into aij , it consists of two parts: the first part can be regarded as a weighted
Mahalanobis-like distance between xj and the group mean of the i-th cluster in
the correlation space. If data point j has been assigned to the i-the subspace
cluster but deviates from the principal component directions of the i-th subspace
cluster (i.e., deviates from the plane where the subspace cluster is lying in), it
tends to produce a large value of aij . The second part represents the Euclidean
distance between xj and the group mean in the cluster space. Noise points are
far away from the cluster center in the cluster space, which also produce large
aij . In summary, a noise point can be pinpointed by checking the anomaly large
aij . Note that the overlapping points are identified by fulfilling the constraint of∑

i,j gij = kl. We need to recalculate l =
⌊
l̃(n−Tr(G0))(k−1)+(n−Tr(G0))

k

⌋
at each

iteration otherwise noise points will be assigned to the overlapping clusters. We
summarize the algorithm to solve problem Eq. (10) in Algorithm 1.

Updating S and P. Adopting the similar derivation of updating Gi, we can use
the iteration based re-weighted method to solve Si by optimizing the following
objective function.

min
S

k∑
i=1

Tr(ST
i CiSiPiPT

i ) + Tr(ST
i DiSiP̄iP̄T

i )

s.t. ∀ 1 ≤ i ≤ k, ST
i Si = I,

(11)

where Ci, Di and Ei are:

Ci = X̃iGiEiGT
i X̃

T
i , (12)

Di = αX̃iG2
i X̃

T
i , (13)

Ei = p
∣∣∣∣GT

i X̃
T
i SiPi

∣∣∣∣p
Sp

(GT
i X̃

T
i SiP2

iS
T
i X̃iGi)

p−2
2 . (14)

Note that PiPT
i leaves the upper left di×di matrix untouched and sets the other

elements to zero, thus the value of Tr(ST
i CiSiPiPT

i ) is equal to the summation
of the eigenvalues of that upper left matrix. It is similar for P̄iP̄T

i .
To solve problem Eq. (11), we first calculate the eigenvalues of Ci and Di

and put them in an array as δi = {δ
(1)
Ci , . . . , δ

(m)
Ci , δ

(1)
Di , . . . , δ

(m)
Di }, then sort δi in
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Algorithm 1. Algorithm to solve problem Eq. (10).
Input:

Variable Ai(1 ≤ i ≤ k), number of clusters k, parameters l̃, λ.
Output:

Cluster and noise indicators Gi(0 ≤ i ≤ k).
1: Initialize G0 = 0n×n.
2: for i = 1 to k do
3: // Make sure every point has been assign to one cluster.
4: for j = 1 to n do

5: Gi(j, j) =

{
1, i = argmin

i
Ai(j, j)

0, otherwise
6: end for
7: // Handle the noise points.
8: J = {j | Gi(j, j) = 1}.
9: mi = median of Ai(J , J ).
10: for j in J do
11: if Ai(j, j) > λ × mi then
12: G0(j, j) = 1.
13: Gi(j, j) = 0.
14: end if
15: Ai(j, j) = Inf.
16: end for
17: end for
18: // Handle the overlapping points.

19: l =
⌊

l̃(n−Tr(G0))(k−1)+(n−Tr(G0))
k

⌋
.

20: I = {(i, j) | sort Ai(j, j) in an ascending order then leave the first kl−(n−Tr(G0))
entries}.

21: Gi(j, j) = 1, if (i, j) ∈ I.

an ascending order. Without loss of generality, we assume that di eigenvalues
of Ci and m − di eigenvalues of Di are in the m-smallest set of δi. Then we
permute the m-smallest set so that the first di and the last m−di entries are the
eigenvalues of Ci and Di, respectively. The optimal solution of problem Eq. (11)
can be obtained by putting di eigenvectors of Ci and m − di eigenvectors of Di

corresponding to their smallest eigenvalues into Si’s columns. Note that di is
automatically determined by the sorting rather than a parameter. Then we can
update Pi and P̄i by using Eq. (1).

Updating M. Mi is a matrix whose columns are identical, every column is the
mean vector of the i-th cluster. Thus the actual variable that needs to be solved
is μi. We solve the following problem to update Mi.

min
μ

k∑
i=1

Tr(GT
i (X − Mi)TFi(X − Mi)Gi)

s.t. ∀ 1 ≤ i ≤ k, Mi = μi1T
n ,

(15)
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Algorithm 2. Algorithm to solve RAOSC
Input:

Data matrix X, the number of clusters k, parameters l̃, λ, α.
Output:

Cluster and noise indicators Gi(0 ≤ i ≤ k), subspace indicators Pi(1 ≤ i ≤ k) and
the orthonormal rigid rotation matrix Si(1 ≤ i ≤ k).

1: Initialize all Gi such the constraints in Eq. (10) are satisfied. Si, Pi, P̄i = I.
Mi = 0.

2: repeat
3: Calculate X̃i|ki=1 = X − Mi.
4: Calculate Ai|ki=1 and Bi|ki=1 using Eq. (7-8).
5: Update Gi|ki=0 using Algorithm 1.
6: Calculate Ci|ki=1, Di|ki=1, Ei|ki=1 using Eq. (12-14).
7: Update Si|ki=1 by putting m eigenvectors ofCi|ki=1 orDi|ki=1 corresponding to the

m-smallest eigenvalues in δi|ki=1 = {δ
(1)
Ci , ..., δ

(m)
Ci , δ

(1)
Di , ..., δ

(m)
Di } into its columns.

8: Permute columns of Si|ki=1 so that the first di and the last m − di columns are
the eigenvectors of Ci|ki=1 and Di|ki=1, respectively.

9: Update Pi|ki=1 and P̄i|ki=1 using Eq. (1).
10: Update Mi|ki=1 using Eq. (16).
11: until convergence or max no. iterations reached.

where Fi = SiPiBiPT
i S

T
i + αSiP̄2

iS
T
i , though it is irrelevant for updating Mi.

By substituting the variable and calculating the derivative w.r.t. μi and setting
it to zero, it is easy to obtain the update rule of Mi as follows.

Mi =
1

Tr(Gi)
XGi1n1T

n . (16)

It can be seen that updating Mi is just simply calculating the mean of a cluster
in the original space.

Finally, we summarize the overall optimization procedure in Algorithm2.

2.4 Relationship to Existing Clustering Paradigms

For α, when setting it to a relative small value, step 7 in Algorithm2 will put
all Di’s eigenvectors into Si’s columns, so that the correlation space is vanished
(Pi = 0) and the cluster space gains full dimensionality (P̄i = I). This yields the
problem Eq. (4) without the first term, which is the ordinary k-means algorithm
(suppose no overlapping or noise). Similarly, if we set α to a large value, it yields
the problem Eq. (4) without the second term, which degenerates to a generalized
version of the LRS model [17]. When setting α to a medium value, it balances
the dimensionality between the correlation space and the cluster space, thus the
correlation and closeness of a cluster are both taken into consideration.

2.5 Time Complexity

Without loss of generality, we assume m < n in the following analysis. The
computational bottleneck of RAOSC lies in the SVD decomposition at step 4, 6
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and 7 of Algorithm 2. In step 4, computing Bi needs to compute
∣∣∣∣PT

i S
T
i X̃iGi

∣∣∣∣p
Sp

and (PT
i S

T
i X̃iG2

i X̃
T
i SiPi)

p−2
2 , both rely on the SVD of PT

i S
T
i X̃iGi, which costs

O(m2n). Thus computing all Bi costs O(m2nk). Computing Ai costs O(m2nk).
Thus step 4 costs O(m2nk). Similar to step 4, step 6 costs O(mn2k). Step 7
needs to compute SVD of Ci and Di, which costs O(m3k). In summary, the
time complexity of Algorithm 2 is O((mn2 + m2n + m3)kt), where k is usually
a small constant that can be ignored, t is the number of iterations. Usually, the
algorithm converges in a few iterations, e.g., 50 iterations.

3 Experiments

In this section, we evaluate our method with respect to its clustering results on
both synthetic data and real-world data. We start with the synthetic data to
show a proof-of-concept of finding arbitrarily oriented subspace clusters in the
presence of noise and overlapping points. Afterwards, we compare our method
with six state-of-the-art algorithms on nine real-world data sets obtained from
the UCI and UCR repositories. For real-world data, we have no prior knowledge
about the noise nor overlapping, and most of the typical comparison algorithms
cannot handle such case. So we only perform clustering on real-world data sets
with an assumption that there are no noise or overlapping points, since we have
demonstrated it on the synthetic data.

3.1 Evaluation on Synthetic Data

We start with the synthetic data to demonstrate the effectiveness of finding
arbitrarily oriented subspace clusters in the presence of noise and overlapping
points. Here three synthetic data sets are generated. In details, synthetic data
1 consists of three subspace clusters in 3D space, where one of the subspace
cluster forms a 2D plane and the other two subspace clusters form two cross lines
passing through the plane’s origin. Each subspace cluster contains 500 points
with 5% level perturbation added to deviate from the subspace. Synthetic data
2 consists of two subspace clusters forming two perpendicular 2D planes in 3D
space, each subspace cluster contains 500 uniformly distributed points with 5%
level perturbation added. Synthetic data 3 consists of two perpendicular subspace
clusters in 2D space. Each subspace cluster contains 500 uniformly distributed
points forming a long and narrow rectangle shape. Note that synthetic data 2
and 3 have approximate 10% overlapping points. Finally, we add uniform noise
points into all synthetic data set with noise level ranging from 0.1 to 0.8.

For comparison, we select three state-of-the-art subspace clustering algo-
rithms and compare the clustering performance while varying the noise level.
The comparison algorithms are NrKmeans [15], ISAAC [22] and ORSC [19]. The
reason we select these algorithms is that they can handle noise and/or overlap-
ping to a certain extent. We select the parameters according to the true statistics
of the data and from a wide tuning range to obtain the best result. For numeri-
cal evaluation, we use the pair-counting F1-measure [1], which is commonly used
when encountering overlapping clustering.
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(a) Synthetic 1. (b) Synthetic 2. (c) Synthetic 3.

Fig. 3. Visualization of the clustering results of RAOSC on synthetic data sets. Colored
points are the found subspace clusters. The orange points are the found overlapping
points. Noise are plotted with gray points. Arrows at the bottom-left represent the
found subspaces of the corresponding clusters. (Color figure online)
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Fig. 4. Clustering results while varying noise levels on synthetic data sets in the pres-
ence of noise and overlapping points.

Figure 3 visualizes the clustering results of RAOSC. Note that we only plot
the low noise level (about 0.3) results for legibility reason, though it can cor-
rectly find the subspace clusters and identify noise points at a higher level of
noise. As we can see, RAOSC successfully assigns data points into the correct
clusters in a sea of noise, and the noise and overlapping points are all correctly
identified. Besides, it obtains the corresponding subspaces as well (indicated by
the arrows at the bottom left corner). Figure 4 shows the numerical evaluation
of the comparison algorithms. RAOSC achieves promising results and outper-
forms other algorithms in most cases. When the noise level is extremely high,
the performance drops sharply, because the extreme noise points have covered
the cluster structure and meaningful clusters no longer exist. We observe that
the performance of comparison algorithms drop down at first and then go up.
This might be because they are mild arbitrators. With the increase of noise level,
they tend to assign noise into multiple overlapping clusters. This can still increase
the score w.r.t. the pair-counting F1-measure though they actually produce the
wrong assignment.
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3.2 Evaluation on Real-World Data

Next we compare with extensive clustering algorithms on the real-world data
sets. Nine real-world data sets are used in this study, which include Pendigits,
Seeds, Soybean, Spam, Wine and Zoo from the UCI repository, OliveOil, Plane
and Symbols from the UCR repository. The statistics of these data sets are given
in Table 1.

Table 1. Statistics of the real-world data sets.

Name #Classes #Dim. #Inst. Name #Classes #Dim. #Inst.

Wine 3 13 178 Seeds 3 7 210

Pendigits 10 16 10092 Soybean 4 35 47

Zoo 7 16 101 Spam 2 57 4601

Plane 7 144 210 Symbol 6 398 1020

Olive 4 570 60

Here, six arbitrarily oriented subspace clustering algorithms are selected.
ORCLUS [3] and 4C [6] are the two most typical arbitrarily oriented subspace
clustering algorithms. SubKmeans [14] and FOSSCLU [8] are two recent sub-
space clustering algorithms. Different from ORCLUS and 4C, they only find one
optimal subspace for clustering. LRR [12] and LRS [17] are two low-rank based
subspace clustering algorithm. Though they are not considered as the classi-
cal subspace clustering algorithm in the data mining community, they are still
closely related to our method. Source codes of all algorithms are downloaded
from the authors’ websites. The source code of RAOSC can be downloaded from
Dropbox2.

For a comprehensive evaluation, we tune all the algorithms’ parameters from
wide ranges while being compatible with the original papers. We search LRR’s
parameter λ within the set of {10−5, 10−4, . . . , 105}. For LRS, we select its
parameter p from {0.1, 0.2, . . . , 1}, and set K = 2. We use PCA and k-means
to do initialization as described in its paper. We search ORCLUS’s parameter
l in the range of [2;min(20,m)], and run 4C for ε ∈ [2; 20], minPts ∈ [1; 15]
and λ ∈ [2;min(20,m)]. SubKmeans has no additional parameters except for k.
FOSSCLU determines parameters automatically. For RAOSC, we search param-
eter α from {10−5, 10−4, . . . , 105}. In addition, we set parameter l to zero, λ to
a large number, which gives no overlapping nor noise result. Similar to LRS, we
use PCA and k-means to initialize the cluster indicator matrices and the cluster
centroids. For all experiments, we standardize all data so that all features have
zero mean and unit variance. Since some algorithms may run into a local opti-
mum and produce insufficient outcomes, we run all algorithms for 10 times and

2 https://www.dropbox.com/s/7csm3itojmb5glh/RAOSC code.rar?dl=0.

https://www.dropbox.com/s/7csm3itojmb5glh/RAOSC_code.rar?dl=0


Towards Robust Arbitrarily Oriented Subspace Clustering 289

Table 2. Clustering results in terms of NMI (%) on the real-world data sets. Results
marked with † were aborted due to memory limit or convergence issues, or cannot
obtain results in reasonable running time. In either case, we report the best results
that have been achieved.

Pendigits OliveOil Seeds Soybean Spam Symbol Wine Zoo Plane

RAOSC 73.68 76.30 73.69 100.00 41.05 81.56 88.26 89.11 91.23

SubKmeans 67.94 75.42 72.79 100.00 2.17 79.48 87.59 83.39 91.23

ORCLUS 68.32 75.86 72.69 96.89 36.13 65.60† 87.79 87.33 70.84

4C 69.99 63.96 16.50 100.00 11.78 81.41 48.11 85.48 88.08

FOSSCLU 70.20 0.00† 63.95 37.02 0.00† 0.00† 84.68 0.00† 0.00†

LRS 65.13 44.16 73.30 69.10 27.04 60.72 63.22 67.03 57.37

LRR 70.85 40.12 21.58 81.49 4.67 78.09 41.36 76.02 93.29

sort the results by their costs and remove the half with higher costs. Then we
report the average NMI for evaluation.

Table 2 summarizes the clustering results. As shown in Table 2, SubKmeans,
ORCLUS, and 4C achieve comparable results. However, SubKmeans only finds
one optimal subspace for clustering rather than distinct subspaces for all clusters.
ORCLUS and 4C are time consuming especially when the number of dimensions
is high. Besides, it is hard to find the optimal parameters for 4C. FOSSCLU also
only finds one optimal subspace for clustering, however, there seems to be conver-
gence issue in the author provided implementation. In general, the two low-rank
based algorithms LRR and LRS perform poorly on these data sets. Neither LRR
nor LRS can give the explicit subspaces of clusters, they all find implicit subspace
clusters in the full-dimensional space, where the low-rank structure is seem to be
dim. By contrast, RAOSC outperforms other algorithms on eight data sets, only
slightly lags behind on the Plane data set. RAOSC naturally characterizes the
intrinsic correlation and closeness properties of subspace cluster, which accounts
for the promising clustering results.

4 Conclusion

In this paper, towards the arbitrarily oriented subspace clustering problem, we
propose a novel algorithm called RAOSC. RAOSC formulates the task as a group
structure low-rank optimization problem, which well characterizes the intrinsic
correlation and closeness properties of subspace cluster. RAOSC can not only
recover the subspace clusters from a sea of noise points but also explicitly obtains
the corresponding subspaces. It can naturally identify the noise and overlapping
points during the optimization process. Empirical experiments on both synthetic
data sets and real-world data sets have demonstrated its effectiveness. In future
work, we would like to reduce the computational complexity. One potential route
is to incorporate accelerated SVD, another is to develop data parallelism at the
algorithmic level [20].
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